Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 28(Pt 4): 1202-1209, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34212885

RESUMO

The Taiwan Photon Source (TPS) with high brightness and energy tunability is suitable for applications in spectroscopy. The tender X-ray absorption beamline will be optimized for X-ray absorption spectroscopy measurements using a bending-magnet source in a unique photon energy range (1.7-10 keV) and two crystal pairs [InSb(111) and Si(111)] separated using back-to-back double-crystal monochromators (DCMs). InSb crystals are typically used in the lower photon energy range of 1.7-3.5 keV. However, the poor thermal conductivity of InSb crystals leads to severe deformation. This factor should be considered when the monochromator is installed on a tender X-ray beamline in a storage ring with a high power density. There are many approaches to reducing the thermal load on the first crystal of a DCM. Double-bounce high harmonics rejection mirrors in front of the DCM serve not only to reduce the high-order harmonics but also to absorb considerable quantities of heat. Two coating stripes on the silicon surfaces with a variable incident angle will be key to solving the thermal load on this beamline.

2.
ACS Nano ; 5(12): 9370-81, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22047129

RESUMO

Although bimetallic core@shell structured nanoparticles (NPs) are achieving prominence due to their multifunctionalities and exceptional catalytic, magnetic, thermal, and optical properties, the rationale underlying their design remains unclear. Here we report a kinetically controlled autocatalytic chemical process, adaptable for use as a general protocol for the fabrication of bimetallic core@shell structured NPs, in which a sacrificial Cu ultrathin layer is autocatalytically deposited on a dimensionally stable noble-metal core under kinetically controlled conditions, which is then displaced to form an active ultrathin metal-layered shell by redox-transmetalation. Unlike thermodynamically controlled under-potential deposition processes, this general strategy allows for the scaling-up of production of high-quality core-shell structured NPs, without the need for any additional reducing agents and/or electrochemical treatments, some examples being Pd@Pt, Pt@Pd, Ir@Pt, and Ir@Pd. Having immediate and obvious commercial potential, Pd@Pt NPs have been systematically characterized by in situ X-ray absorption, electrochemical-FTIR, transmission electron microscopy, and electrochemical techniques, both during synthesis and subsequently during testing in one particularly important catalytic reaction, namely, the oxygen reduction reaction, which is pivotal in fuel cell operation. It was found that the bimetallic Pd@Pt NPs exhibited a significantly enhanced electrocatalytic activity, with respect to this reaction, in comparison with their monometallic counterparts.


Assuntos
Galvanoplastia/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Paládio/química , Platina/química , Catálise , Cristalização/métodos , Cinética , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
3.
Chemistry ; 17(38): 10724-35, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21837730

RESUMO

Two methods were used to prepare bimetallic Pt(3)Cr(1)/C nanocatalysts with similar composition but different alloying extent (structure). We investigated how these differences in alloying extent affect the catalytic activity, stability and selectivity in the oxygen reduction reaction (ORR). One method, based on slow thermal decomposition of the Cr precursor at a rate that matches that of chemical reduction of the Pt precursor, allows fine control of the composition of the Pt(3)Cr(1)/C alloy, whereas the second approach, using the ethylene glycol method, results in considerable deviation (>25 %) from the projected composition. Consequently, these two methods lead to variations in the alloying extent that strongly influence the Pt d-band vacancy and the Pt electroactive surface area (Pt ESCA). This relationship was systematically evaluated by transmission electron microscopy, X-ray absorption near edge structure spectroscopy, and electrochemical analysis. The ORR activity depends on two effects that nullify each other, namely, the number of active Pt sites and their activity. The Pt-site activity is more dominant in governing the ORR activity. The selectivity of the nanocatalyst towards the ORR and the competitive methanol oxidation reaction (MOR) depend on these two effects acting in cooperation to give enhanced ORR activity with suppressed MOR. The number of active Pt sites is associated with the Pt ESCA value, while Pt-site activity is associated with the alloying extent and Pt d-band vacancy (electronic) effects. The presence of Cr atoms in Pt(3)Cr(1)/C enhances stability during electrochemical treatment. Overall, the Pt(3)Cr(1)/C catalyst prepared by controlled-composition synthesis was shown to be superior in ORR activity, selectivity and stability owing to its favorable alloying extent, Pt d-band vacancy, and Pt ESCA.


Assuntos
Carbono/química , Cromo/química , Nanopartículas Metálicas/química , Oxigênio/química , Platina/química , Ligas/química , Catálise , Metanol/química , Oxirredução
4.
Chem Commun (Camb) ; 47(13): 3864-6, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21331439

RESUMO

We present a surfactant-free approach for synthesizing size-dependent carbon supported Pt nanoparticles with mean sizes ranging from 4.8 to 1.7 nm by increasing ratios of CO/Ar. In this work, gas stabilizer exhibits the originality on the design of the supported size-controllable clusters.

5.
Chemistry ; 16(36): 11064-71, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20690117

RESUMO

We report a systematic investigation on the structural and electronic effects of carbon-supported Pt(x)Pd(1-x) bimetallic nanoparticles on the oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in acid electrolyte. Pt(x)Pd(1-x)/C nanocatalysts with various Pt/Pd atomic ratios (x=0.25, 0.5, and 0.75) were synthesized by using a borohydride-reduction method. Rotating-disk electrode measurements revealed that the Pt(3)Pd(1)/C nanocatalyst has a synergistic effect on the ORR, showing 50% enhancement, and an antagonistic effect on the MOR, showing 90% reduction, relative to JM 20 Pt/C on a mass basis. The extent of alloying and Pt d-band vacancies of the Pt(x)Pd(1-x)/C nanocatalysts were explored by extended X-ray absorption fine-structure spectroscopy (EXAFS) and X-ray absorption near-edge structure spectroscopy (XANES). The structure-activity relationship indicates that ORR activity and methanol tolerance of the nanocatalysts strongly depend on their extent of alloying and d-band vacancies. The optimal composition for enhanced ORR activity is Pt(3)Pd(1)/C, with high extent of alloying and low Pt d-band vacancies, owing to favorable O-O scission and inhibited formation of oxygenated intermediates. MOR activity also shows structure dependence. For example, Pt(1)Pd(3)/C with Pt(rich-core)Pd(rich-shell) structure possesses lower MOR activity than the Pt(3)Pd(1)/C nanocatalyst with random alloy structure. Herein, extent of alloying and d-band vacancies reveal new insights into the synergistic and antagonistic effects of the Pt(x)Pd(1-x)/C nanocatalysts on surface reactivity.

6.
Chemistry ; 16(15): 4602-11, 2010 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-20235238

RESUMO

The chemical dealloying mechanism of bimetallic Pt-Co nanoparticles (NPs) and enhancement of their electrocatalytic activity towards the oxygen reduction reaction (ORR) have been investigated on a fundamental level by the combination of X-ray absorption spectroscopy (XAS) and aberration-corrected scanning transmission electron microscopy (STEM). Structural parameters, such as coordination numbers, alloy extent, and the unfilled d states of Pt atoms, are derived from the XAS spectra, together with the compositional variation analyzed by line-scanning energy-dispersive X-ray spectroscopy (EDX) on an atomic scale, to gain new insights into the dealloying process of bimetallic Pt-Co NPs. The XAS results on acid-treated Pt-Co/C NPs reveal that the Co-Co bonding in the bimetallic NPs dissolves first and the remaining morphology gradually transforms to a Pt-skin structure. From cyclic voltammetry and mass activity measurements, Pt-Co alloy NPs with a Pt-skin structure significantly enhance the catalytic performance towards the ORR. Further, it is observed that such an imperfect Pt-skin surface feature will collapse due to the penetration of electrolyte into layers underneath and cause further dissolution of Co and the loss of Pt. The electrocatalytic activity decreases accordingly, if the dealloying process lasts for 4 h. The findings not only demonstrate the importance of appropriate treatment of bimetallic catalysts, but also can be referred to other Pt bimetallic alloys with transition metals.

7.
J Synchrotron Radiat ; 16(Pt 1): 97-104, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19096180

RESUMO

At the National Synchrotron Radiation Research Center (NSRRC), which operates a 1.5 GeV storage ring, a dedicated small-angle X-ray scattering (SAXS) beamline has been installed with an in-achromat superconducting wiggler insertion device of peak magnetic field 3.1 T. The vertical beam divergence from the X-ray source is reduced significantly by a collimating mirror. Subsequently the beam is selectively monochromated by a double Si(111) crystal monochromator with high energy resolution (DeltaE/E approximately 2 x 10(-4)) in the energy range 5-23 keV, or by a double Mo/B4C multilayer monochromator for 10-30 times higher flux ( approximately 10(11) photons s(-1)) in the 6-15 keV range. These two monochromators are incorporated into one rotating cradle for fast exchange. The monochromated beam is focused by a toroidal mirror with 1:1 focusing for a small beam divergence and a beam size of approximately 0.9 mm x 0.3 mm (horizontal x vertical) at the focus point located 26.5 m from the radiation source. A plane mirror installed after the toroidal mirror is selectively used to deflect the beam downwards for grazing-incidence SAXS (GISAXS) from liquid surfaces. Two online beam-position monitors separated by 8 m provide an efficient feedback control for an overall beam-position stability in the 10 microm range. The beam features measured, including the flux density, energy resolution, size and divergence, are consistent with those calculated using the ray-tracing program SHADOW. With the deflectable beam of relatively high energy resolution and high flux, the new beamline meets the requirements for a wide range of SAXS applications, including anomalous SAXS for multiphase nanoparticles (e.g. semiconductor core-shell quantum dots) and GISAXS from liquid surfaces.

8.
J Synchrotron Radiat ; 14(Pt 4): 320-5, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17587656

RESUMO

Using a superconducting-wavelength-shifter X-ray source with a photon flux density of 10(11)-10(13) photons s(-1) mrad(-1) (0.1% bandwidth)(-1) (200 mA)(-1) in the energy range 5-35 keV, three hard X-ray beamlines, BL01A, BL01B and BL01C, have been designed and constructed at the 1.5 GeV storage ring of the National Synchrotron Radiation Research Center (NSRRC). These have been designed for structure-related research using X-ray imaging, absorption, scattering and diffraction. The branch beamline BL01A, which has an unmonochromatized beam, is suitable for phase-contrast X-ray imaging with a spatial resolution of 1 microm and an imaging efficiency of one frame per 10 ms. The main beamline BL01B has 1:1 beam focusing and a medium energy resolution of approximately 10(-3). It has been designed for small-angle X-ray scattering and transmission X-ray microscopy, used, respectively, in anomalous scattering and nanophase-contrast imaging with 30 nm spatial resolution. Finally, the branch beamline BL01C, which features collimating and focusing mirrors and a double-crystal monochromator for a high energy resolution of approximately 10(-4), has been designed for X-ray absorption spectroscopy and high-resolution powder X-ray diffraction. These instruments, providing complementary tools for studying multiphase structures, have opened up a new research trend of integrated structural study at the NSRRC, especially in biology and materials. Examples illustrating the performances of the beamlines and the instruments installed are presented.

9.
Langmuir ; 23(10): 5802-9, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17425346

RESUMO

The chemical state and formation mechanism of Pt-Ru nanoparticles (NPs) synthesized by using ethylene glycol (EG) as a reducing agent and their stability have been examined by in situ X-ray absorption spectroscopy (XAS) at the Pt LIII and Ru K edges. It appears that the reduction of Pt(IV) and Ru(III) precursor salts by EG is not a straightforward reaction but involves different intermediate steps. The pH control of the reaction mixture containing Pt(IV) and Ru(III) precursor salts in EG to 11 led to the reduction of Pt(IV) to Pt(II) corresponding to [PtCl4](2-) whereas Ru(III)Cl3 is changed to the [Ru(OH)6](3-) species. Refluxing the mixture containing [PtCl4](2-) and [Ru(OH)6](3-) species at 160 degrees C for 0.5 h produces Pt-Ru NPs as indicated by the presence of Pt and Ru in the first coordination shell of the respective metals. No change in XAS structural parameters is found when the reaction time is further increased, indicating that the Pt-Ru NPs formed are extremely stable and less prone to aggregation. XAS structural parameters suggest a Pt-rich core and a Ru-rich shell structure for the final Pt-Ru NPs. Due to the inherent advantages of the EG reduction method, the atomic distribution and alloying extent of Pt and Ru in the Pt-Ru NPs synthesized by the EG method are higher than those of the Pt-Ru/C NPs synthesized by a modified Watanabe method.

10.
Chemistry ; 13(21): 6255-64, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17458913

RESUMO

The ability to alter the surface population of metal sites in bimetallic nanoparticles (NPs) is of great interest in the context of heterogeneous catalysis. Here, we report findings of surface alterations of Pt and Ru metallic sites in bimetallic carbon-supported (PtRu/C) NPs that were induced by employing a controlled thermal-treatment strategy. The thermal-treatment procedure was designed in such a way that the particle size of the initial NPs was not altered and only the surface population of Pt and Ru was changed, thus allowing us to deduce structural information independent of particle-size effects. X-ray absorption spectroscopy (XAS) was utilized to deduce the structural parameters that can provide information on atomic distribution and/or extent of alloying as well as the surface population of Pt and Ru in PtRu/C NPs. The PtRu/C catalyst sample was obtained from Johnson Matthey, and first the as-received catalyst was reduced in 2 % H2 and 98 % Ar gas mixture at 300 degrees C for 4 h (PtRu/C as-reduced). Later this sample was subjected to thermal treatment in either oxygen (PtRu/C-O2-300) or hydrogen (PtRu/C-H2-350). The XAS results reveal that when the as-reduced PtRu/C catalyst was exposed to the O2 thermal-treatment strategy, a considerable amount of Ru was moved to the catalyst surface. In contrast, the H2 thermal-treatment strategy led to a higher population of Pt on the PtRu/C surface. Characterization of the heat-treated PtRu/C samples by X-ray diffraction and transmission electron microscopy reveals that there is no significant change in the particle size of thermally treated samples when compared to the as-received PtRu/C sample. The electrochemical properties of the as-reduced and heat-treated PtRu/C catalyst samples were confirmed by cyclic voltammetry, CO-adsorption stripping voltammetry, and linear sweep voltammetry. Both XAS and electrochemical investigations concluded that the PtRu/C-H2-350 sample exhibits significant enhancement in reactivity toward methanol oxidation as a result of the increased surface population of the Pt when compared to the PtRu/C-O2-300 and PtRu/C as-reduced samples.

11.
ACS Nano ; 1(2): 114-25, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19206527

RESUMO

In this study, we demonstrate the unique application of X-ray absorption spectroscopy (XAS) as a fundamental characterization tool to help in designing and controlling the architecture of Pd-Au bimetallic nanoparticles within a water-in-oil microemulsion system of water/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane. Structural insights obtained from the in situ XAS measurements recorded at each step during the formation process revealed that Pd-Au bimetallic clusters with various Pd-Au atomic stackings are formed by properly performing hydrazine reduction and redox transmetalation reactions sequentially within water-in-oil microemulsions. A structural model is provided to explain reasonably each reaction step and to give detailed insight into the nucleation and growth mechanism of Pd-Au bimetallic clusters. The combination of in situ XAS analysis at both the Pd K-edge and the Au L(III)-edge and UV-vis absorption spectral features confirms that the formation of Pd-Au bimetallic clusters follows a (Pd(nuclei)-Au(stack))-Pd(surf) stacking. This result further implies that the thickness of Au(stack) and Pd(surf) layers may be modulated by varying the dosage of the Au precursor and hydrazine, respectively. In addition, a bimetallic (Pd-Au)(alloy) nanocluster with a (Pd(nuclei)-Au(stack))-(Pd-Au(alloy))(surf) stacking was also designed and synthesized in order to check the feasibility of Pd(surf) layer modification. The result reveals that the Pd(surf) layer of the stacked (Pd(nuclei)-Au)(stack) bimetallic clusters can be successfully modified to form a (Au-Pd alloy)(surf) layer by a co-reduction of Pd and Au ions by hydrazine. Further, we demonstrate the alloying extent or atomic distribution of Pd and Au in Pd-Au bimetallic nanoparticles from the derived XAS structural parameters. The complete XAS-based methodology, demonstrated here on the Pd-Au bimetallic system, can easily be extended to design and control the alloying extent or atomic distribution, atomic stacking, and electronic structure to construct many other types of bimetallic systems for interesting applications.

12.
J Phys Chem B ; 110(13): 6475-82, 2006 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-16570944

RESUMO

The understanding of the formation mechanism of nanoparticles is essential for the successful particle design and scaling-up process. This paper reports findings of an X-ray absorption spectroscopy (XAS) investigation, comprised of X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) regions, to understand the mechanism of the carbon-supported Pt-Ru nanoparticles (NPs) formation process. We have utilized Watanabe's colloidal reduction method to synthesize Pt-Ru/C NPs. We slightly modified the Watanabe method by introducing a mixing and heat treatment step of Pt and Ru oxidic species at 100 degrees C for 8 h with a view to enhance the mixing efficiency of the precursor species, thereby one can achieve improved homogeneity and atomic distribution in the resultant Pt-Ru/C NPs. During the reduction process, in situ XAS measurements allowed us to follow the evolution of Pt and Ru environments and their chemical states. The Pt LIII-edge XAS indicates that when H2PtCl6 is treated with NaHSO3, the platinum compound is found to be reduced to a Pt(II) form corresponding to the anionic complex [Pt(SO3)4]6-. Further oxidation of this anionic complex with hydrogen peroxide forms dispersed [Pt(OH)6]2- species. Analysis of Ru K-edge XAS results confirms the reduction of RuIIICl3 to [RuII(OH)4]2- species upon addition of NaHSO3. Addition of hydrogen peroxide to [RuII(OH)4]2- causes dehydrogenation and forms RuOx species. Mixing of [Pt(OH)6]2- and RuOx species and heat treatment at 100 degrees C for 8 h produced a colloidal sol containing both Pt and Ru metallic as well as ionic contributions. The reduction of this colloidal mixture at 300 degrees C in hydrogen atmosphere for 2 h forms Pt-Ru nanoparticles as indicated by the presence of Pt and Ru atoms in the first coordination shell. Determination of the alloying extent or atomic distribution of Pt and Ru atoms in the resulting Pt-Ru/C NPs reveals that the alloying extent of Ru (JRu) is greater than that of the alloying extent of Pt (JPt). The XAS results support the Pt-rich core and Ru-rich shell structure with a considerable amount of segregation in the Pt region and with less segregation in the Ru region for the obtained Pt-Ru/C NPs.

13.
J Am Chem Soc ; 127(31): 11140-5, 2005 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16076222

RESUMO

In this report, we describe a general methodology to determine the extent of alloying or atomic distribution quantitatively in bimetallic nanoparticles (NPs) by X-ray absorption spectroscopy (XAS). The structural parameters determined in these studies serve as a quantitative index and provide a general route to determine the structural aspects of the bimetallic NPs. We have derived various types of possible structural models based on the extent of alloying and coordination number parameters of bimetallic NPs. We also discussed the nature of homo- and heterometallic interactions in bimetallic NPs based on the extent of alloying. Herein, we use carbon-supported platinum-ruthenium bimetallic nanoparticles to demonstrate the proposed methodology, and this can be extended further to get more insights into the alloying extent or atomic distribution of other bimetallic systems. The results demonstrated in this paper open up methods to determine the atomic distribution of bimetallic NPs, which is an extremely important parameter that strongly influences the physicochemical properties of NPs and their applications.

14.
J Phys Chem B ; 109(46): 21566-75, 2005 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-16853800

RESUMO

We report in situ X-ray absorption spectroscopy (XAS) investigations on the formation of palladium-platinum (Pd/Pt) bimetallic clusters at the early stage within the water-in-oil microemulsion system of water/AOT/n-heptane. The reduction of palladium and platinum ions and the formation of corresponding clusters are monitored as a function of dosage of reducing agent, hydrazine (N(2)H(5)OH). Upon successive addition of the reducing agent, hydrazine (N(2)H(5)OH), five distinguishable steps are observed in the formation process of Pd/Pt clusters at the early stage. Both in situ X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis for both the Pd K-edge and Pt L(III)-edge revealed the formation of Pd/Pt bimetallic clusters. A corresponding structural model is proposed for each step to provide a detailed insight into the nucleation and growth mechanism of Pd/Pt bimetallic clusters. We also discussed the atomic distribution of Pd and Pt atoms in Pd/Pt bimetallic clusters based on the calculated XAS structural parameters.


Assuntos
Ácido Dioctil Sulfossuccínico/química , Micelas , Compostos Organometálicos/síntese química , Paládio/química , Platina/química , Compostos Organometálicos/química , Sensibilidade e Especificidade , Análise Espectral/métodos , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...