Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurosci Bull ; 40(1): 65-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37755676

RESUMO

Interactions between brain-resident and peripheral infiltrated immune cells are thought to contribute to neuroplasticity after cerebral ischemia. However, conventional bulk sequencing makes it challenging to depict this complex immune network. Using single-cell RNA sequencing, we mapped compositional and transcriptional features of peri-infarct immune cells. Microglia were the predominant cell type in the peri-infarct region, displaying a more diverse activation pattern than the typical pro- and anti-inflammatory state, with axon tract-associated microglia (ATMs) being associated with neuronal regeneration. Trajectory inference suggested that infiltrated monocyte-derived macrophages (MDMs) exhibited a gradual fate trajectory transition to activated MDMs. Inter-cellular crosstalk between MDMs and microglia orchestrated anti-inflammatory and repair-promoting microglia phenotypes and promoted post-stroke neurogenesis, with SOX2 and related Akt/CREB signaling as the underlying mechanisms. This description of the brain's immune landscape and its relationship with neurogenesis provides new insight into promoting neural repair by regulating neuroinflammatory responses.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Humanos , Encéfalo/metabolismo , Macrófagos , Isquemia Encefálica/metabolismo , Microglia/metabolismo , Perfilação da Expressão Gênica , Anti-Inflamatórios , Plasticidade Neuronal/fisiologia , Infarto/metabolismo
2.
Cell Rep ; 42(11): 113386, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37948181

RESUMO

Paclitaxel leads to peripheral neuropathy (paclitaxel-induced peripheral neuropathy [PIPN]) in approximately 50% of cancer patients. At present, there are no effective treatment strategies for PIPN, the mechanisms of which also remain unclear. In this study, we performed microbiome and metabolome analysis of feces and serum from breast cancer patients with different PIPN grades due to paclitaxel treatment. Our analysis reveals that levels of deoxycholic acid (DCA) are highly increased because of ingrowth of Clostridium species, which is associated with severe neuropathy. DCA, in turn, elevates serum level of C-C motif ligand 5 (CCL5) and induces CCL5 receptor 5 (CCR5) overexpression in dorsal root ganglion (DRG) through the bile acid receptor Takeda G-protein-coupled receptor 5 (TGR5), contributing to neuronal hyperexcitability. Consistent with this, administration of CCR5 antagonist maraviroc suppresses the development of neuropathic nociception. These results implicate gut microbiota/bile acids/CCR5 signaling in the induction of PIPN, thus suggesting a target for PIPN treatment.


Assuntos
Neoplasias da Mama , Neuralgia , Humanos , Feminino , Paclitaxel/efeitos adversos , Neuralgia/induzido quimicamente , Maraviroc , Ácido Desoxicólico , Receptores CCR5
3.
Postgrad Med ; 135(6): 551-561, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37428007

RESUMO

Many undergraduate students suffer from 'neurophobia,' which refers to a lack of knowledge or confidence in neurology, and this can influence their career choices. Various measures have been taken to address this issue, including the implementation of new technologies and methodologies. Significant advancements have been made in the development of blended learning, and the integration of student-centered learning modules, multimedia, and web-based devices has become a common teaching approach. Nonetheless, the optimal delivery form, as well as assessment for the selected learning format and teaching quality in both theory and clinical practice, are being investigated. The purpose of this review is to provide a summary of the current understanding of blended learning as well as innovative methods, technologies, and assessments of undergraduate neurology education. It aims to highlight opportunities for implementing a novel, comprehensive learning model with a suitable blended learning method within a framework of customized technology-assessment processes for future neurology classes, encompassing both theoretical and clinical training.


Assuntos
Educação de Graduação em Medicina , Neurologia , Humanos , Currículo , Estudantes
4.
Biomed Res Int ; 2022: 9973232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36560962

RESUMO

In recent studies, stem cell-based therapy is a potential new approach in the treatment of stroke. The mechanism of human umbilical cord mesenchymal stem cell (hUMSC) transplantation as one of the new approaches in the treatment of ischemic stroke is still unclear. The aim of this study was to determine the traits of immune responses during stroke progression after treatment with human umbilical cord blood MSCs by bioinformatics, to predict potential prognostic biomarkers that could lead to sex differences, and to reveal potential therapeutic targets. The microarray dataset GSE78731 (mRNA profile) of middle cerebral artery occlusion (MCAO) rats was obtained from the Gene Expression Omnibus (GEO) database. First, two potentially expressed genes (DEGs) were screened using the Bioconductor R package. Ultimately, 30 specific DEGs were obtained (22 upregulated and 353 downregulated). Next, bioinformatic analysis was performed on these specific DEGs. We performed a comparison for the differentially expressed genes screened from between the hUMSC and MCAO groups. Gene Ontology enrichment and pathway enrichment analyses were then performed for annotation and visualization. Gene Ontology (GO) functional annotation analysis shows that DEGs are mainly enriched in leukocyte migration, neutrophil activation, neutrophil degranulation, the external side of plasma membrane, cytokine receptor binding, and carbohydrate binding. KEGG pathway enrichment analysis showed that the first 5 enrichment pathways were cytokine-cytokine receptor interaction, chemokine signal pathway, viral protein interaction with cytokine and cytokine receptor, cell adhesion molecules (CAMs), and phagosome. The top 10 key genes of the constructed PPI network were screened, including Cybb, Ccl2, Cd68, Ptprc, C5ar1, Il-1b, Tlr2, Itgb2, Itgax, and Cd44. In summary, hUMSC is likely to be a promising means of treating IS by immunomodulation.


Assuntos
Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Humanos , Feminino , Masculino , Ratos , Animais , Prognóstico , Mapas de Interação de Proteínas/genética , Perfilação da Expressão Gênica , Infarto da Artéria Cerebral Média , Biologia Computacional , Citocinas/genética , Ontologia Genética , NADPH Oxidase 2/genética
5.
Stroke Vasc Neurol ; 7(5): 381-389, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35577395

RESUMO

BACKGROUND: The brain-gut axis is a major regulator of the central nervous system. We investigated the effects of treatment with broad-spectrum antibiotics on gut and brain inflammation, infarct size and long-term behavioral outcome after cerebral ischemia in rats. METHODS: Rats were treated with broad-spectrum antibiotics (ampicillin, vancomycin, ciprofloxacin, meropenem and metronidazole) for 4 weeks before the endothelin-1 induced ischemia. Treatment continued for 2 weeks until the end of behavioral testing, which included tapered ledged beam-walking, adhesive label test and cylinder test. Gut microbiome, short-chain fatty acids and cytokine levels were measured together with an assessment of infarct size, neuroinflammation and neurogenesis. RESULTS: The results revealed that the antibiotics exerted a clear impact on the gut microbiota. This was associated with a decrease in systemic and brain cytokine levels, infarct size and apoptosis in the perilesional cortex and improved behavioral outcome. CONCLUSION: Our results highlighted the significant relationship between intestinal microbiota and beneficial neuro-recovery after ischemic stroke.


Assuntos
Microbioma Gastrointestinal , Acidente Vascular Cerebral , Animais , Ratos , Ampicilina/farmacologia , Antibacterianos , Ciprofloxacina/farmacologia , Citocinas , Endotelina-1/farmacologia , Ácidos Graxos Voláteis , Infarto/complicações , Meropeném/farmacologia , Metronidazol/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Vancomicina/farmacologia
6.
Oxid Med Cell Longev ; 2022: 7619255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154571

RESUMO

Alzheimer's disease (AD) and Huntington's disease (HD) are destructive worldwide diseases. Efforts have been made to elucidate the process of these two diseases, yet the pathogenesis remains elusive as it involves a combination of multiple factors, including genetic and environmental ones. To explore the potential role of forkhead box O1 (FOXO1) in the development of AD and HD, we identified 1,853 differentially expressed genes (DEGs) from 19,414 background genes in both the AD&HD/control and FOXO1-low/high groups. Four coexpression modules were predicted by the weighted gene coexpression network analysis (WGCNA), among which blue and turquoise modules had the strongest correlation with AD&HD and high expression of FOXO1. Functional enrichment analysis showed that DEGs in these modules were enriched in phagosome, cytokine-cytokine receptor interaction, cellular senescence, FOXO signaling pathway, pathways of neurodegeneration, GABAergic synapse, and AGE-RAGE signaling pathway in diabetic complications. Furthermore, the cross-talking pathways of FOXO1 in AD and HD were jointly determined in a global regulatory network, such as the FOXO signaling pathway, cellular senescence, and AGE-RAGE signaling pathway in diabetic complications. Based on the performance evaluation of the area under the curve of 85.6%, FOXO1 could accurately predict the onset of AD and HD. We then identified the cross-talking pathways of FOXO1 in AD and HD, respectively. More specifically, FOXO1 was involved in the FOXO signaling pathway and cellular senescence in AD; correspondingly, FOXO1 participated in insulin resistance, insulin, and the FOXO signaling pathways in HD. Next, we use GSEA to validate the biological processes in AD&HD and FOXO1 expression. In GSEA analysis, regulation of protein maturation and regulation of protein processing were both enriched in the AD&HD and FOXO1-high groups, suggesting that FOXO1 may have implications in onset and progression of these two diseases through protein synthesis. Consequently, a high expression of FOXO1 is a potential pathogenic factor in both AD and HD involving mechanisms of the FOXO signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and cellular senescence. Our findings provide a comprehensive perspective on the molecular function of FOXO1 in the pathogenesis of AD and HD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteína Forkhead Box O1/metabolismo , Regulação da Expressão Gênica , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Transdução de Sinais/genética , Área Sob a Curva , Senescência Celular/genética , Citocinas/metabolismo , Bases de Dados Genéticas , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Fagossomos/genética , Processamento de Proteína Pós-Traducional/genética , Receptores de Citocinas/metabolismo
7.
PeerJ ; 10: e12768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35111402

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common malignant tumor in the central system with a poor prognosis. Due to the complexity of its molecular mechanism, the recurrence rate and mortality rate of GBM patients are still high. Therefore, there is an urgent need to screen GBM biomarkers to prove the therapeutic effect and improve the prognosis. RESULTS: We extracted data from GBM patients from the Gene Expression Integration Database (GEO), analyzed differentially expressed genes in GEO and identified key modules by weighted gene co-expression network analysis (WGCNA). GSE145128 data was obtained from the GEO database, and the darkturquoise module was determined to be the most relevant to the GBM prognosis by WGCNA (r =  - 0.62, p = 0.01). We performed enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to reveal the interaction activity in the selected modules. Then Kaplan-Meier survival curve analysis was used to extract genes closely related to GBM prognosis. We used Kaplan-Meier survival curves to analyze the 139 genes in the darkturquoise module, identified four genes (DARS/GDI2/P4HA2/TRUB1) associated with prognostic GBM. Low expression of DARS/GDI2/TRUB1 and high expression of P4HA2 had a poor prognosis. Finally, we used tumor genome map (TCGA) data, verified the characteristics of hub genes through Co-expression analysis, Drug sensitivity analysis, TIMER database analysis and GSVA analysis. We downloaded the data of GBM from the TCGA database, the results of co-expression analysis showed that DARS/GDI2/P4HA2/TRUB1 could regulate the development of GBM by affecting genes such as CDC73/CDC123/B4GALT1/CUL2. Drug sensitivity analysis showed that genes are involved in many classic Cancer-related pathways including TSC/mTOR, RAS/MAPK.TIMER database analysis showed DARS expression is positively correlated with tumor purity (cor = 0.125, p = 1.07e-02)), P4HA2 expression is negatively correlated with tumor purity (cor =-0.279, p = 6.06e-09). Finally, GSVA analysis found that DARS/GDI2/P4HA2/TRUB1 gene sets are closely related to the occurrence of cancer. CONCLUSION: We used two public databases to identify four valuable biomarkers for GBM prognosis, namely DARS/GDI2/P4HA2/TRUB1, which have potential clinical application value and can be used as prognostic markers for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Redes Reguladoras de Genes/genética , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Prognóstico
8.
BMC Neurol ; 22(1): 3, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979964

RESUMO

BACKGROUND: A decrease in hippocampal neurogenesis is considered an important cause of cognitive impairment, while changes in mossy fiber sprouting are closely related to development of spontaneous recurrent seizures in chronic temporal lobe epilepsy (TLE). Racemic l-3-n-butylphthalide (DL-NBP) can alleviate cognitive impairment in ischemic stroke and Alzheimer's disease by promoting neurogenesis. DL-NBP treatment can also improve cognitive function and reduce seizure incidence in chronic epileptic mice. However, the mechanisms of action of DL-NBP remain unclear. The aim of the present study was to examine the effects of DL-NBP on mossy fiber sprouting, hippocampal neurogenesis, spontaneous epileptic seizures, and cognitive functioning in the chronic phase of TLE. METHODS: Nissl staining was used to evaluate hippocampal injury, while immunofluorescent staining was used to analyze hippocampal neurogenesis. The duration of spontaneous seizures was measured by electroencephalography. The Morris water maze was used to evaluate cognitive function. Timm staining was used to assess mossy fiber sprouting. RESULTS: TLE animals showed reduced proliferation of newborn neurons, cognitive dysfunction, and spontaneous seizures. Treatment with DL-NBP after TLE increased the proliferation and survival of newborn neurons in the dentate gyrus, reversed the neural loss in the hippocampus, alleviated cognitive impairments, and decreased mossy fiber sprouting and long-term spontaneous seizure activity. CONCLUSIONS: We provided pathophysiological and morphological evidence that DL-NBP might be a useful therapeutic for the treatment of TLE.


Assuntos
Epilepsia do Lobo Temporal , Animais , Benzofuranos , Epilepsia do Lobo Temporal/tratamento farmacológico , Hipocampo , Camundongos , Fibras Musgosas Hipocampais , Neurogênese , Ratos
9.
Eur J Neurosci ; 54(4): 5341-5356, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34318540

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect during the course of cancer treatment, which is mainly manifested as a series of sensory abnormalities. At present, there are no recommended prevention or treatment strategies, and the underlying mechanisms are unclear. The ketogenic diet (KD), a special diet that is high in fat and low in carbohydrate intake, shows good therapeutic potential in children with epilepsy. In this study, it was found that KD significantly prevented paclitaxel-induced neuropathic nociception. Using the GSE113941 database, 281 differentially expressed genes (DEGs) were found in an animal model of CIPN and controls. The DEGs were mainly enriched in peroxisome proliferator activated receptor (PPAR) and oxidative phosphorylation signalling pathways. As a main regulatory pathway of lipid metabolism, the PPARγ signalling pathway was significantly upregulated in the KD model. In addition, KD also inhibited the expression of pro-inflammatory cytokines and the TLR4/NF-κB signalling pathway in the dorsal root ganglion (DRG) in paclitaxel-treated rats. In vitro, rat primary DRG neurons were used to investigate the role of PPARγ in paclitaxel-induced neurotoxicity. It was found that PPARγ agonist rosiglitazone significantly protected DRG neurons against cell apoptosis and reactive oxygen species generation induced by paclitaxel administration. Therefore, KD is a prospective treatment option when applied as a dietary intervention in the prevention and treatment of paclitaxel-induced neuropathic nociception, possibly through the activation of PPARγ and its neuroprotective functions.


Assuntos
Antineoplásicos Fitogênicos , Dieta Cetogênica , Doenças do Sistema Nervoso Periférico , Animais , Gânglios Espinais , Nociceptividade , PPAR gama , Paclitaxel/toxicidade , Estudos Prospectivos , Ratos , Ratos Sprague-Dawley
10.
Front Immunol ; 11: 1931, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042113

RESUMO

Cerebral ischemia may cause irreversible neural network damage and result in functional deficits. Targeting neuronal repair after stroke potentiates the formation of new connections, which can be translated into a better functional outcome. Innate and adaptive immune responses in the brain and the periphery triggered by ischemic damage participate in regulating neural repair after a stroke. Immune cells in the blood circulation and gut lymphatic tissues that have been shaped by immune components including gut microbiota and metabolites can infiltrate the ischemic brain and, once there, influence neuronal regeneration either directly or by modulating the properties of brain-resident immune cells. Immune-related signalings and metabolites from the gut microbiota can also directly alter the phenotypes of resident immune cells to promote neuronal regeneration. In this review, we discuss several potential mechanisms through which peripheral and brain-resident immune components can cooperate to promote first the resolution of neuroinflammation and subsequently to improved neural regeneration and a better functional recovery. We propose that new insights into discovery of regulators targeting pro-regenerative process in this complex neuro-immune network may lead to novel strategies for neuronal regeneration.


Assuntos
Encéfalo/imunologia , Sistema Imunitário/imunologia , Regeneração Nervosa , Neuroimunomodulação , Neurônios/imunologia , Acidente Vascular Cerebral/imunologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Microbioma Gastrointestinal , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/fisiopatologia , Neurônios/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia
11.
Front Neurosci ; 14: 575, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612503

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by muscle weakness due to the degeneration of the upper and lower motor neurons. Neuroinflammation is known as a prominent pathological feature of ALS. Although neuroinflammation cannot trigger ALS, activated central nervous system (CNS) microglia and astrocytes, proinflammatory periphery monocytes/macrophages and T lymphocytes, and infiltrated monocytes/macrophages and T lymphocytes, as well as the immunoreactive molecules they release, are closely related to disease progression. The crosstalk between the peripheral and CNS immune components mentioned above significantly correlates with survival in patients with ALS. This review provides an update on the role of this crosstalk between the CNS and peripheral immune responses in ALS. Additionally, we discuss changes in the composition of gut microbiota because these can directly or indirectly influence this crosstalk. These recent advances may well provide innovative ways for targeting the molecules associated with this crosstalk and breaking the current treatment impasse in ALS.

12.
Restor Neurol Neurosci ; 37(4): 397-407, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31306143

RESUMO

Stroke often leads to neuronal injury and neurological functional deficits. Whilst spontaneous neurogenesis and axon regeneration are induced by ischemic stroke, effective pharmacological treatments are also essential for the improvement of neuroplasticity and functional recovery after stroke. However, no pharmacological therapy has been demonstrated to be able to effectively improve the functional recovery after stroke. Bumetanide is a specific Na+-K+-Cl- co-transporter inhibitor which can maintain chloride homeostasis in neurons. Therefore, many studies have focused on this drug's effect in stroke recovery in recent years. Here, we first review the function of Na+-K+-Cl- co-transporter in neurons, then how bumetanide's role in reducing brain damage, promoting neuroplasticity, leading to functional recovery after stroke, is elucidated. Finally, we discuss current limitations of bumetanide's efficiency and their potential solutions. These results may provide new avenues for further exploring mechanisms of post-stroke functional recovery as well as promising therapeutic targets for functional disability rehabilitation after ischemic stroke.


Assuntos
Bumetanida/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA