Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39061997

RESUMO

Junctional adhesion molecule-A (JAM-A), also known as F11 receptor (F11R), is a transmembrane glycoprotein that is involved in various biological processes, including cancer initiation and progression. However, the functional characteristics and significance of JAM-A in pan-cancer remain unexplored. In this study, we used multiple databases to gain a comprehensive understanding of JAM-A in human cancers. JAM-A was widely expressed in various tissues, mainly located on the microtubules and cell junctions. Aberrant expression of JAM-A was detected in multiple cancers at both mRNA and protein levels, which can be correlated with poorer prognosis and may be attributed to genetic alterations and down-regulated DNA methylation. JAM-A expression was also associated with immune infiltration and may affect immunotherapy responses in several cancers. Functional enrichment analysis indicated that JAM-A participated in tight junction and cancer-related pathways. In vitro experiments verified that JAM-A knockdown suppressed the proliferation and migration abilities of breast cancer cells and liver cancer cells. Overall, our study suggests that JAM-A is a pan-cancer regulator and a potential biomarker for predicting prognosis and immune-therapeutic responses for different tumors.

2.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38397085

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains a global health crisis with substantial morbidity and mortality rates. Type II alveolar epithelial cells (AEC-II) play a critical role in the pulmonary immune response against Mtb infection by secreting effector molecules such as antimicrobial peptides (AMPs). Here, human ß-defensin 1 (hBD1), an important AMP produced by AEC-II, has been demonstrated to exert potent anti-tuberculosis activity. HBD1 overexpression effectively inhibited Mtb proliferation in AEC-II, while mice lacking hBD1 exhibited susceptibility to Mtb and increased lung tissue inflammation. Mechanistically, in A549 cells infected with Mtb, STAT1 negatively regulated hBD1 transcription, while CEBPB was the primary transcription factor upregulating hBD1 expression. Furthermore, we revealed that the ERK1/2 signaling pathway activated by Mtb infection led to CEBPB phosphorylation and nuclear translocation, which subsequently promoted hBD1 expression. Our findings suggest that the ERK1/2-CEBPB-hBD1 regulatory axis can be a potential therapeutic target for anti-tuberculosis therapy aimed at enhancing the immune response of AEC-II cells.


Assuntos
Mycobacterium tuberculosis , Tuberculose , beta-Defensinas , Animais , Humanos , Camundongos , Células Epiteliais Alveolares , beta-Defensinas/genética , beta-Defensinas/farmacologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Células Epiteliais , Sistema de Sinalização das MAP Quinases , Tuberculose/metabolismo
3.
JCI Insight ; 9(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38016036

RESUMO

Tuberculosis has the highest mortality rate worldwide for a chronic infectious disease caused by a single pathogen. RNA-binding proteins (RBPs) are involved in autophagy - a key defense mechanism against Mycobacterium tuberculosis (M. tuberculosis) infection - by modulating RNA stability and forming intricate regulatory networks. However, the functions of host RBPs during M. tuberculosis infection remain relatively unexplored. Zinc finger NFX1-type containing 1 (ZNFX1), a conserved RBP critically involved in immune deficiency diseases and mycobacterial infections, is significantly upregulated in M. tuberculosis-infected macrophages. Here, we aimed to explore the immunoregulatory functions of ZNFX1 during M. tuberculosis infection. We observed that Znfx1 knockout markedly compromised the multifaceted immune responses mediated by macrophages. This compromise resulted in reduced phagocytosis, suppressed macrophage activation, increased M. tuberculosis burden, progressive lung tissue injury, and chronic inflammation in M. tuberculosis-infected mice. Mechanistic investigations revealed that the absence of ZNFX1 inhibited autophagy, consequently mediating immune suppression. ZNFX1 critically maintained AMPK-regulated autophagic flux by stabilizing protein kinase AMP-activated catalytic subunit alpha 2 mRNA, which encodes a key catalytic α subunit of AMPK, through its zinc finger region. This process contributed to M. tuberculosis growth suppression. These findings reveal a function of ZNFX1 in establishing anti-M. tuberculosis immune responses, enhancing our understanding of the roles of RBPs in tuberculosis immunity and providing a promising approach to bolster antituberculosis immunotherapy.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/genética , Macrófagos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA