Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36560305

RESUMO

In this study, nanostructured gold was successfully prepared on a bare Au electrode using the electrochemical deposition method. Nanostructured gold provided more exposed active sites to facilitate the ion and electron transfer during the electrocatalytic reaction of organophosphorus pesticide (methyl parathion). The morphological and structural characterization of nanostructured gold was conducted using field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), which was further carried out to evaluate the electrocatalytic activity towards methyl parathion sensing. The electrochemical performance of nanostructured gold was investigated by electrochemical measurements (cyclic voltammetry (CV) and differential pulse voltammetry (DPV)). The proposed nanostructured gold-modified electrode exhibited prominent electrochemical methyl parathion sensing performance (including two linear concentration ranges from 0.01 to 0.5 ppm (R2 = 0.993) and from 0.5 to 4 ppm (R2 = 0.996), limit of detection of 5.9 ppb, excellent selectivity and stability), and excellent capability in determination of pesticide residue in real fruit and vegetable samples (bok choy and strawberry). The study demonstrated that the presented approach to fabricate a nanostructured gold-modified electrode could be practically applied to detect pesticide residue in agricultural products via integrating the electrochemical and gas chromatography coupled with mass spectrometry (GC/MS-MS) analysis.


Assuntos
Nanopartículas Metálicas , Metil Paration , Nanocompostos , Resíduos de Praguicidas , Praguicidas , Metil Paration/análise , Praguicidas/análise , Compostos Organofosforados/análise , Ouro/química , Resíduos de Praguicidas/análise , Nanocompostos/química , Eletrodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Nanopartículas Metálicas/química
2.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328716

RESUMO

Morphologically tunable copper oxide-based nanomaterials on Cu wire have been synthesized through a one-step alkali-assisted surface oxidation process for non-enzymatic glucose sensing. Subsequently, copper oxide-based nanomaterials on Cu wire as a supporting matrix to deposit manganese oxide for the construction of heterostructured Mn-Cu bimetallic oxide architectures through spontaneous redox reaction in the KMnO4 solution for supercapacitors. Field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) confirmed that morphological and phase transformation from Cu(OH)2 to CuO occurred in copper oxide-based nanomaterials on Cu wire with different degrees of growth reaction. In non-enzymatic glucose sensing, morphologically tunable copper oxide-based nanomaterials owned the high tunability of electrocatalytically active sites and intrinsic catalytic activity to meet efficient glucose electrooxidation for obtaining promoted non-enzymatic glucose sensing performances (sensitivity of 2331 µA mM-1 cm-2 and the limit of detection of 0.02 mM). In the supercapacitor, heterostructured Mn-Cu bimetallic oxide-based nanomaterials delivered abundant redox-active sites and continuous conductive network to optimize the synergistic effect of Mn and Cu redox species for boosting the pseudo-capacitance performance (areal capacitance value of 79.4 mF cm-2 at 0.2 mA cm-2 current density and capacitance retention of 74.9% after 1000 cycles). It concluded that morphologically tunable copper oxide-based nanomaterials on Cu wire with/without deposition of manganese oxide could be good candidates for the future design of synergistic multifunctional materials in electrochemical techniques.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Cobre/química , Eletrodos , Glucose/química , Compostos de Manganês , Óxidos
3.
Nanomaterials (Basel) ; 11(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34835646

RESUMO

A simple, efficient, and cost-effective extended graphite as a supporting platform further supported the MnO2 growth for the construction of hierarchical flower-like MnO2/extended graphite. MnO2/extended graphite exhibited an increase in sp2 carbon bonds in comparison with that of extended graphite. It can be expected to display better electrical conductivity and further promote electron/ion transport kinetics for boosting the electrochemical performance in supercapacitors and glucose sensing. In supercapacitors, MnO2/extended graphite delivered an areal capacitance value of 20.4 mF cm-2 at 0.25 mA cm-2 current densities and great cycling stability (capacitance retention of 83% after 1000 cycles). In glucose sensing, MnO2/extended graphite exhibited a good linear relationship in glucose concentration up to about 5 mM, sensitivity of 43 µA mM-1cm-2, and the limit of detection of 0.081 mM. It is further concluded that MnO2/extended graphite could be a good candidate for the future design of synergistic multifunctional materials in electrochemical techniques.

4.
J Hazard Mater ; 165(1-3): 359-65, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19059711

RESUMO

Sludge, a solid waste recovered from wastewater of semiconductor-industries composes of agglomerates of nano-particles like SiO(2) and CaF(2). This sludge deflocculates in acidic and alkaline aqueous solutions into nano-particles smaller than 100 nm. Thus, this sludge is potentially hazardous to water resources when improperly dumped. It can cause considerable air-pollution when fed into rotary-kilns as a raw material for cement production. In this study, dried and pulverized sludge was used to replace 5-20 wt.% Portland cement in cement mortar. The compressive strength of the modified mortar was higher than that of plain cement mortar after curing for 3 days and more. In particular, the strength of mortar with 10 wt.% substitution improved by 25-35% after curing for 7-90 days. TCLP studies reveal no detectable release of heavy metals. Preliminary studies showed that nano-particles deflocculated from the sludge, when cured for up to 3 days retain in the modified mortar their nano-size, which become large-sized hydration compounds that contribute to the final mortar strength. Semiconductor sludge can thus be utilized as a useful resource to replace portion of cement in cement mortar, thereby avoiding their potential hazard on the environment.


Assuntos
Conservação dos Recursos Naturais , Resíduos Industriais/prevenção & controle , Semicondutores , Fluoreto de Cálcio , Materiais de Construção , Esgotos , Dióxido de Silício
5.
J Colloid Interface Sci ; 302(1): 123-32, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16808921

RESUMO

Waterborne polyurethane (WPU) was synthesized and followed by adding colloidal silica to prepare WPU-silica hybrids. The silica content in the hybrid thin films was varied from 0 to 50 wt%. The experimental results revealed that the viscosity of these hybrid solutions increased with increasing silica content and resulted in the aggregation of silica particle in the hybrid films. The latter result was evidenced by SEM examination. The effect of interaction between silica particle and urethane polymer chains is more significant with increasing silica content. The prepared hybrid films show much better thermal stability and mechanical properties than pure WPU. The optical transparence did not linearly decrease with increasing the silica fraction in the hybrid thin film. At below 20% silica content, the film transparence decreased with increasing silica content; the converse is true at above 20% silica content. These results showed that the prepared hybrid films demonstrated tunable transparence with the silica fraction in the films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...