Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 23(10): 12808-22, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-26074535

RESUMO

We describe a multiwavelength hybrid-integrated solid-state link on a 3 µm silicon-on-insulator (SOI) nanophotonic platform. The link spans three chips and employs germanium-silicon electroabsorption waveguide modulators, silicon transport waveguides, echelle gratings for multiplexing and demultiplexing, and pure germanium waveguide photo-detectors. The 8λ WDM Tx and Rx components are interconnected via a routing "bridge" chip using edge-coupled optical proximity communication. The packaged, retimed digital WDM link is demonstrated at 10 Gb/s and 10(-12) BER, with three wavelength channels consuming an on-chip power below 1.5 pJ/bit, excluding the external laser power.

2.
Opt Express ; 23(10): 13172-84, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-26074570

RESUMO

We report on a packaged prototype of a WDM photonic transceiver. It is an all-solid state hybrid assembly based on 130nm SOI photonic circuitry integrated with a 40nm CMOS VLSI driver. Our prototype supports eight tunable WDM channels operating at 10Gb/s, each capable of both transmitting and receiving data on the same chip. We discuss two options to close the link using the optical fiber or a waveguide bridge chip. We provide integration details and supporting link measurement data to describe packaged photonic module and its power efficient functionality with its on-chip power per channel averaging 1.3pJ/bit, excluding off-chip laser electrical power.

3.
Opt Express ; 22(10): 12628-33, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24921379

RESUMO

We report the first complete 10G silicon photonic ring modulator with integrated ultra-efficient CMOS driver and closed-loop wavelength control. A selective substrate removal technique was used to improve the ring tuning efficiency. Limited by the thermal tuner driver output power, a maximum open-loop tuning range of about 4.5nm was measured with about 14mW of total tuning power including the heater driver circuit power consumption. Stable wavelength locking was achieved with a low-power mixed-signal closed-loop wavelength controller. An active wavelength tracking range of > 500GHz was demonstrated with controller energy cost of only 20fJ/bit.

4.
Opt Express ; 19(6): 5172-86, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21445153

RESUMO

Using low parasitic microsolder bumping, we hybrid integrated efficient photonic devices from different platforms with advanced 40 nm CMOS VLSI circuits to build ultra-low power silicon photonic transmitters and receivers for potential applications in high performance inter/intra-chip interconnects. We used a depletion racetrack ring modulator with improved electro-optic efficiency to allow stepper optical photo lithography for reduced fabrication complexity. Integrated with a low power cascode 2 V CMOS driver, the hybrid silicon photonic transmitter achieved better than 7 dB extinction ratio for 10 Gbps operation with a record low power consumption of 1.35 mW. A received power penalty of about 1 dB was measured for a BER of 10(-12) compared to an off-the-shelf lightwave LiNOb3 transmitter, which comes mostly from the non-perfect extinction ratio. Similarly, a Ge waveguide detector fabricated using 130 nm SOI CMOS process was integrated with low power VLSI circuits using hybrid bonding. The all CMOS hybrid silicon photonic receiver achieved sensitivity of -17 dBm for a BER of 10(-12) at 10 Gbps, consuming an ultra-low power of 3.95 mW (or 395 fJ/bit in energy efficiency). The scalable hybrid integration enables continued photonic device improvements by leveraging advanced CMOS technologies with maximum flexibility, which is critical for developing ultra-low power high performance photonic interconnects for future computing systems.

5.
Opt Express ; 18(1): 204-11, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-20173840

RESUMO

We report ultra-low-power (690fJ/bit) operation of an optical receiver consisting of a germanium-silicon waveguide detector intimately integrated with a receiver circuit and embedded in a clocked digital receiver. We show a wall-plug power efficiency of 690microW/Gbps for the photonic receiver made of a 130nm SOI CMOS Ge waveguide detector integrated to a 90nm Si CMOS receiver circuit. The hybrid CMOS photonic receiver achieved a sensitivity of -18.9dBm at 5Gbps for BER of 10(-12). Enabled by a unique low-overhead bias refresh scheme, the receiver operates without the need for DC balanced transmission. Small signal measurements of the CMOS Ge waveguide detector showed a 3dB bandwidth of 10GHz at 1V of reverse bias, indicating that further increases in transmission rate and reductions of energy-per-bit will be possible.


Assuntos
Dispositivos Ópticos , Fotometria/instrumentação , Semicondutores , Processamento de Sinais Assistido por Computador/instrumentação , Telecomunicações/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...