Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(14): e202316898, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38340024

RESUMO

The main obstacles to promoting the commercialization of perovskite solar cells (PSCs) include their record power conversion efficiency (PCE), which still remains below the Shockley-Queisser limit, and poor long-term stability, attributable to crystallographic defects in perovskite films and open-circuit voltage (Voc) loss in devices. In this study, potassium (4-tert-butoxycarbonylpiperazin-1-yl) methyl trifluoroborate (PTFBK) was employed as a multifunctional additive to target and modulate bulk perovskite defects and carrier dynamics of PSCs. Apart from simultaneously passivating anionic and cationic defects, PTFBK could also optimize the energy-level alignment of devices and weaken the interaction between carriers and longitudinal optical phonons, resulting in a carrier lifetime of greater than 3 µs. Furthermore, it inhibited non-radiative recombination and improved the crystallization capacity in the target perovskite film. Hence, the target rigid and flexible p-i-n PSCs yielded champion PCEs of 24.99 % and 23.48 %, respectively. More importantly, due to hydrogen bonding between formamidinium and fluorine, the target devices exhibited remarkable thermal, humidity, and operational tracking at maximum power point stabilities. The reduced Young's modulus and residual stress in the perovskite layer also provided excellent bending stability for flexible target devices.

2.
ACS Appl Mater Interfaces ; 15(4): 5529-5537, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36680517

RESUMO

Developing highly efficient blue thermally activated delayed fluorescence (TADF) emitters with a narrowband emission is still a challenge. Here, novel ultrapure blue TADF emitters of TSBA-Cz and TSBA-PhCz were designed and synthesized for organic light-emitting diodes (OLEDs). Photophysical and time-dependent density functional theory calculation results simultaneously show the similar intramolecular charge-transfer character of MR-type TADF emitters. Benefiting from the symmetrical and rigid molecular configuration, compounds TSBA-Cz and TSBA-PhCz emit a pure blue emission peak at 463 and 470 nm, a narrow full width at half-maximum (FWHM) of 30 and 36 nm, and a small singlet-triplet energy gap (ΔEST) of 0.21 and 0.18 eV, respectively, facilitating their excellent TADF behavior in doped films. Furthermore, highly efficient TADF-OLED devices using the TSBA-Cz and TSBA-PhCz with external quantum efficiencies of 23.4 and 21.3% emit ultrapure blue electroluminescence (EL) at 464 and 472 nm with a narrow FWHM of about 35 nm and CIE color coordinates of (0.14, 0.11) and (0.12, 0.18). This work provides novel TADF emitters for blue OLEDs with narrowband EL.

3.
Chemistry ; 28(67): e202202439, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36065000

RESUMO

Two-coordinate donor-metal-acceptor type coinage metal complexes displaying efficient thermally activated delayed fluorescence (TADF) have been unveiled to be highly appealing candidates as emitters for organic light-emitting diodes (OLEDs). Herein a series of green to yellow TADF gold(I) complexes with alkynyl ligands has been developed for the first time. The complexes exhibit high photoluminescence quantum yields (PLQYs) of up to 0.76 in doped films (5 wt % in PMMA) at room temperature. The modifications of alkynyl ligands with electron-donating amino groups together with the use of electron-deficient carbene ligands induce ligand-to-ligand charge transfer excited states that give rise to TADF emission. Spectroscopic and density functional theory (DFT) calculations reveal the roles of electron-donating capability of the alkynyl ligand in tuning the excited-state properties. Solution-processed organic light-emitting diodes (OLEDs) using the present complexes as emitters achieve maximum external quantum efficiency (EQE) of up to 20 %.

4.
J Phys Chem Lett ; 13(32): 7561-7567, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35948077

RESUMO

Organic light-emitting diodes (OLEDs) still face a significant challenge in finding blue thermally activated delayed fluorescence (TADF) emitters that can achieve narrowband emission and high efficiency. In this work, we successfully design and synthesize a novel kind of TADF emitters based on rigid sulfur/oxygen-bridged triarylboron acceptor for ultrapure blue with narrowband electroluminescence. Time-dependent density functional theory (TD-DFT) calculations and photophysical results indicate the different intramolecular charge-transfer (ICT) character of two emitters. Benefiting from the rigid aromatic framework, both emitters exhibited deep-blue emission at 444 and 447 nm with a small full-width at half-maximum (fwhm) of about 33 nm, and a small singlet (S1)-triplet (T1) energy gap (ΔEST) of 0.23 and 0.36 eV. Consequently, OLEDs based on PhCz-TOSBA and TPA-TOSBA exhibit deep blue electroluminescence at 456 nm with fwhm of about 55 nm, affording high external quantum efficiencies (EQEs) of 16.69% with CIE coordinates of (0.14, 0.15) and 16.65% with CIE coordinates of (0.14, 0.12), respectively. These findings show that PhCz-TOSBA and TPA-TOSBA are superior emitters in ultrapure blue TADF devices.

5.
RSC Adv ; 12(7): 4408-4416, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35425465

RESUMO

Novel modified MOF intercalated hydrotalcites was synthesized for catalyzing the conversion of glycerol into high value-added glycerol carbonate in this paper. [APmim]OH/ZIF-8 was prepared by encapsulating aminopropyl hydroxide imidazole ionic liquid in ZIF-8 and inserted in Ca-Mg-Al hydrotalcites with layered structures to prepare [APmim]OH/ZIF-8/LDH with strong basicity and high specific surface area. ZIF-8, [APmim]OH/ZIF-8 and [APmim]OH/ZIF-8/LDH were characterized by XRD, FT-IR, SEM and nitrogen adsorption-desorption. The results showed that the conversion rate of glycerol can reach 98.6% and the glycerol carbonate yield was 96.5% in the transesterification of glycerol with dimethyl carbonate catalyzed by [APmim]OH/ZIF-8/LDH when the molar ratio of DMC and glycerol was 3 : 1, the catalyst dosage was 3 wt%, the reaction temperature was 75 °C and the reaction time was 80 minutes. The glycerol conversion rate can still reach more than 90% after five reaction cycles.

6.
Sci Rep ; 12(1): 2989, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194037

RESUMO

As an emerging technology, the hybrid analog-digital structure has been considered for use in future millimeter-wave communications. Although this structure can reduce the hardware cost and power consumption considerably, the spatial covariance matrix (SCM), as the core of subspace-based direction of arrival (DOA) estimation, cannot be obtained directly. Previously, the beam sweeping algorithm (BSA) has been found effective for reconstructing the spatial covariance matrix and realizing DOA estimation by forming the beams to difference directions. However, it is computationally intractable owing to the high-dimensional matrix operation. To address this problem and improve the DOA estimation performance, this paper applies the nested array to the hybrid analog-digital structure and proposes the enhanced BSA (EBSA) for DOA estimation. By deleting a large number of redundant elements exist in the SCM to be reconstructed, the computational cost can be considerably reduced. Also, the nested array can offer high degrees of freedom. Finally, simulation experiments are conducted to verify the performance of EBSA. The results indicate that the proposed EBSA is better than the state-of-the-art method in terms of estimation accuracy and computational cost.

7.
Molecules ; 25(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977384

RESUMO

Ca-Mg-Al hydrotalcites were prepared by coprecipitation from Type S95 steel slag of Shanghai Baosteel Group as supports of ionic liquid in this paper. Five basic ionic liquids [Bmim][CH3COO], [Bmim][HCOO], [Bmim]OH, [Bmim]Br and ChOH were prepared and their catalytic performance on the synthesis of glycerol carbonate by transesterification between dimethyl carbonate and glycerol was investigated. The characterization results indicated that [Bmim]OH is the best ionic liquid (IL) for the transesterification reaction of glycerol carbonate. The hydrotalcites before and after intercalation by ionic liquid were characterized by XRD, FTIR, SEM, EDS and the IL were characterized by FT-IR, 13C-NMR and basicity determination via the Hammett method. The analysis results implied that the dispersion of [Bmim]OH in hydrotalcites reduced the alkali density appropriately and facilitated the generation of glycerol carbonate. The yield of glycerol carbonate and the conversion rate of glycerol reached 95.0% and 96.1%, respectively, when the molar ratio of dimethyl carbonate and glycerol was 3:1, the catalyst dosage was 3 wt%, the reaction temperature was 75 °C and the reaction time was 120 min. The layered structure of hydrotalcites increased the stability of ionic liquid intercalated in carriers, thus the glycerol conversion and the GC yield still remained 91.9% and 90.5% in the fifth reaction cycle.


Assuntos
Hidróxido de Alumínio/química , Hidróxido de Alumínio/síntese química , Carbonatos/química , Glicerol/química , Hidróxido de Magnésio/química , Hidróxido de Magnésio/síntese química , Aço/química , Resíduos , Técnicas de Química Sintética , Esterificação , Líquidos Iônicos/química
8.
Sci Rep ; 10(1): 10273, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581246

RESUMO

The mixed metal oxides S-CaMgAl MO prepared by acidolysis, coprecipitation and calcination under different temperatures from S95 steel slag of Shanghai Baosteel Co., Ltd. were used to catalyze the transesterification of dimethyl carbonate (DMC) and glycerol for synthesizing glycerol carbonate (GC). The catalysts were characterized by EDS, XRD, FT-IR, SEM, CO2-TPD and nitrogen adsorption-desorption isotherms. S-CaMgAl MO calcined at 600 °C had excellent catalytic performance due to the large pore size and proper alkalinity. The effects of reaction temperature, reaction time and the amount of catalyst on transesterification were investigated to obtain the optimal reaction conditions. The glycerol carbonate yield reached 96.2% and the glycerol conversion was 98.3% under the condition of 3 wt% catalyst, 1:3 molar ratio of glycerol and DMC, 75 °C reaction temperature and 90 min reaction time. In addition, the GC yield and glycerol conversion still achieved above 90% after five cycles of S-CaMgAl MO.

9.
RSC Adv ; 10(44): 26358-26363, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35519753

RESUMO

In this study, Mg-Al-La composite oxide loaded with ionic liquid [Bmim]OH was used as a catalyst for the synthesis of fatty acid isobutyl ester (FAIBE) via transesterification between waste cooking oil and isobutanol. Mg-Al-La composite oxide was synthesized from the ß-cyclodextrin (ß-CD) intercalation modification of Mg-Al-La layered double hydroxides. The structure of the catalyst was characterized via XRD, BET and EDS. The results showed that the interlayer space of the catalyst was increased due to ß-CD intercalation modification. The IL/CD-Mg-Al-La catalyst exhibited significant catalytic activity and regeneration performance in transesterification due to large interlayer space and strongly alkaline ionic liquid. The yield of FAIBE achieved was 98.3% under the optimum reaction condition and 95.2% after regeneration for six times. The viscosity-temperature curve of FAIBE was determined and the phase transition temperature was -1 °C. The pour point of FAIBE was only -10 °C, which exhibited excellent low temperature fluidity.

10.
Org Lett ; 21(21): 8832-8836, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31642687

RESUMO

A novel angular-fused dithianaphthylquinone derivative, f-TX-TPA, was designed and selectively synthesized. The regioselectivity of angular-fused reaction was interpreted by theoretical calculations. The f-TX-TPA compound displayed excellent thermally activated delayed fluorescence property. Moreover, the organic light-emitting diodes (OLEDs) using f-TX-TPA as an emitter exhibited a high external quantum efficiency of 15.9%. These results indicated that angular-fused dithianaphthylquinone derivatives could have great potential in the application of high-efficiency OLEDs.

11.
J Phys Chem Lett ; 10(8): 1888-1893, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30939025

RESUMO

Exploration of new extrinsic ways to modulate thermally activated delayed fluorescence (TADF) to achieve high exciton utilization efficiency in organic light-emitting diodes (OLEDs) is highly desirable. A new thiochromone derivative 2,3-bis(4-(9 H-carbazol-9-yl)phenyl)-4 H-thiochromen-4-1,1-dioxide (THI-PhCz) with tunable photophysical properties from crystals to amorphous states is reported. THI-PhCz shows molecular-packing-dependent TADF in different aggregation states based on the differences of intermolecular interactions. Furthermore, it is observed that THI-PhCz doped in amorphous films of different hosts also shows host-dependent TADF with a short delay lifetime (108 ns), which is interpreted as the effect of host-guest intermolecular interaction on the 3CT state except for the effect on the 1CT state in reported references. This work provides a new perspective for generation of TADF by tuning intermolecular interactions in crystals and amorphous films except for molecular design, which is expected to contribute in achieving low-efficiency roll-off OLEDs with effective exciton utilization efficiency.

12.
Front Chem ; 7: 188, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024884

RESUMO

A series of thermally activated delayed fluorescence (TADF) exciplex based on the TX-TerPy were constructed. The electronic coupling between the triplet local excited states (3LE) of the donors and acceptor and the charge transfer states had a great influence on the triplet exciton harvesting and ΦPL. Herein, based on this strategy, three donor molecules TAPC, TCTA, and m-MTDATA were selected. The local triplet excited state (3LE) of the three donors are 2.93, 2.72 and 2.52 eV in pure films. And the 3LE of TX-TerPy is 2.69 eV in polystyrene film. The energy gap between the singlet charge transfer (1CT) states of TAPC:TX-TerPy (7:1), TCTA:TX-TerPy (7:1) and the 3LE of TX-TerPy are 0.30 eV and 0.20 eV. Finally, the ΦPL of TAPC:TX-TerPy (7:1) and TCTA:TX-TerPy (7:1) are 65.2 and 69.6%. When we changed the doping concentration of the exciplex from 15% to 50%, the ratio of the triplet decreased, and ΦPL decreased by half, perhaps due to the increased energy gap between 1CT and 3LE. Therefore, optimizing the 1CT, 3CT, and 3LE facilitated the efficient exciplex TADF molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...