Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
1.
Chem Sci ; 15(15): 5642-5652, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38638228

RESUMO

Passivation treatment is an effective method to suppress various defects in perovskite solar cells (PSCs), such as cation vacancies, under-coordinated Pb2+ or I-, and Pb-I antisite defects. A thorough understanding of the diversified impacts of different defect passivation methods (DPMs) on the device performance will be beneficial for making wise DPM choices. Herein, we choose a hydrophobic Lewis acid tris(pentafluorophenyl)borane (BCF), which can dissolve in both the perovskite precursor and anti-solvent, as the passivation additive. BCF treatment can immobilize organic cations via forming hydrogen bonds. Three kinds of DPMs based on BCF are applied to modify perovskite films in this work. It is found that the best DPM with BCF dissolved in anti-solvent can not only passivate multiple defects in perovskite, but also inhibit δ phase perovskite and improve the stability of devices. Meanwhile, DPM with BCF dissolved in both the perovskite precursor and anti-solvent can cause cracks and voids in perovskite films and deteriorate device performance, which should be avoided in practical applications. As a result, PSCs based on optimal DPMs of BCF present an increased efficiency of 22.86% with negligible hysteresis as well as improved overall stability. This work indicates that the selection and optimization of DPMs have an equally important influence on the photovoltaic performance of PSCs as the selection of passivation additives.

2.
ACS Sens ; 9(4): 1749-1755, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38587118

RESUMO

Aggregation-induced emission (AIE) has offered a promising approach for developing low-background fluorescent methods; however, its applications often suffer from complex probe synthesis and poor biocompatibility. Herein, a novel AIE biosensing method for kanamycin antibiotic assays was developed by utilizing a DNA network nanostructure assembled from an aptamer recognition reaction to capture a large number of tetraphenylethylene fluorogen-labeled signal DNA (DTPE) probes. Due to the excellent hydrophilicity of the oligonucleotides, DTPE exhibited excellent water solubility without obvious background signal emission. Based on an ingenious nucleotide design, an abundance of G-quadruplex blocks neighboring the captured DTPE were formed on the DNA nanostructure. Because of the greatly restricted free motion of DTPE by this unique nanostructure, a strong AIE fluorescence signal response was produced to construct the signal transduction strategy. Together with target recycling and rolling circle amplification-based cascade nucleic acid amplification, this method exhibited a wide linear range from 75 fg mL-1 to 1 ng mL-1 and a detection limit down to 24 fg mL-1. The excellent analytical performance and effective manipulation improvement of the method over previous approaches determine its promising potential for various applications.


Assuntos
Técnicas Biossensoriais , DNA , Quadruplex G , Limite de Detecção , Nanoestruturas , Técnicas Biossensoriais/métodos , Nanoestruturas/química , DNA/química , Corantes Fluorescentes/química , Aptâmeros de Nucleotídeos/química , Espectrometria de Fluorescência , Canamicina/análise , Técnicas de Amplificação de Ácido Nucleico/métodos , Estilbenos/química
3.
Int J Surg ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608032

RESUMO

BACKGROUND: Whether health inequalities of disease burden and medical utilization exist by ethnicity in Asian breast cancer (BC) patients remains unclear. We aim to measure ethnic disparities in disease burden and utilization among Mongolian and Han female breast cancer patients in China. MATERIALS AND METHODS: Based on data extracted from Inner Mongolia Regional Health Information Platform, a retrospective cohort study was established during 2012-2021. Disease burden including incidence, 5-year prevalence, mortality, survival rate, and medical cost were analyzed and compared between Han and Mongolian patients. RESULTS: A total of 34,878 female patients (mean [SD] age, 52.34 [10.93] years) were included among 18.19 million Chinese, and 4,315 [12.03%] participants were Mongolian. Age-standardized rates of incidence are 32.68 (95% CI: 20.39-44.98) per 100,000. Higher age-specific incidence and 5-year prevalence were observed in Mongolian than in Han. The cost of breast cancer annually per capita was significantly lower for Mongolian than Han in FBC ($1,948.43 [590.11-4 776.42] vs. $2,227.35 [686.65-5,929.59], P<0.001). Mongolian females showed higher all-cause mortality (30.92, [95% CI: 28.15-33.89] vs. 27.78, [95% CI: 26.77-28.83] per 1,000, P=0.036) and breast cancer-specific mortality (18.78, [95% CI: 16.64-21.13] vs. 15.22, [95% CI: 14.47-16.00] per 1,000, P=0.002) than Han females. After adjusting covariates, Mongolian were associated with increased all-cause mortality (HR, 1.21, [95% CI, 1.09-1.34]; P<0.001) and breast cancer-specific mortality (HR, 1.31, [95% CI, 1.14-1.49]; P<0.001). CONCLUSION: The findings of this cohort study highlight a higher level of disease burden with unmet medical demand in Mongolian patients, suggesting that more practical efforts should be made for the minority. Further research is needed to explore the concrete mechanisms of the disparities as well as eliminate health disproportion.

4.
Angew Chem Int Ed Engl ; : e202405676, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606914

RESUMO

Metal-organic framework (MOF) membranes with rich functionality and tunable pore system are promising for precise molecular separation; however, it remains a challenge to develop defect-free high-connectivity MOF membrane with high water stability owing to uncontrollable nucleation and growth rate during fabrication process. Herein, we report on a confined-coordination induced intergrowth strategy to fabricate lattice-defect-free Zr-MOF membrane towards precise molecular separation. The confined-coordination space properties (size and shape) and environment (water or DMF) were regulated to slow down the coordination reaction rate via controlling the counter-diffusion of MOF precursors (metal cluster and ligand), thereby inter-growing MOF crystals into integrated membrane. The resulting Zr-MOF membrane with angstrom-sized lattice apertures exhibits excellent separation performance both for gas separation and water desalination process. It was achieved H2 permeance of ~1200 GPU and H2/CO2 selectivity of ~67; water permeance of ~8 L ⋅ m-2 ⋅ h-1 ⋅ bar-1 and MgCl2 rejection of ~95 %, which are one to two orders of magnitude higher than those of state-of-the-art membranes. The molecular transport mechanism related to size-sieving effect and transition energy barrier differential of molecules and ions was revealed by density functional theory calculations. Our work provides a facile approach and fundamental insights towards developing precise molecular sieving membranes.

5.
Adv Healthc Mater ; : e2303511, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353398

RESUMO

Type 2 diabetes is rapidly emerging as a global public health problem. While blood glucose monitoring has been the primary method of managing diabetes for decades, the increasing global prevalence of the disease suggests that there might be a need to identify additional biomarkers for a more precise early diagnosis. Herein, a microneedle patch based wearable sensor is developed for the purpose of diabetic diagnosis. Utilizing methacrylic acid modified gelatin and polyvinyl alcohol in the fabrication of microneedles has improved their mechanical properties for skin penetration and increased swelling capacity for interstitial fluid extraction, thanks to the double crosslinking mechanism. The fabricated microneedles are further integrated with test paper functionalized with enzyme and dye molecules to detect multiple signature biomarkers of diabetes in vivo through a colorimetric reaction. Such a wearable microneedle patch  holds significant promise for the real-time monitoring of various biomarkers related to chronic diseases and aging.

6.
Plant Cell Rep ; 43(2): 31, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195905

RESUMO

KEY MESSAGE: OsMKK1, a MAPK gene, positively regulates rice Xa21-mediated resistance response and also plays roles in normal growth and development process of rice. The mitogen-activated protein kinase (MAPK) cascade was highly conserved among eukaryotes, which played crucial roles in plant responses to pathogen infection. Bacterial blight is the most devastating bacterial disease. Xa21 confers broad-spectrum resistance to Xanthomonas oryzae pv. Oryzae (Xoo). This study identified that the transcription level of OsMKK1 was up-regulated in resistant response against Xoo, thus overexpression (OsMKK1-OX) and RNA interference (OsMKK1-RNAi) transgenic rice lines under the background of Xa21 was constructed. Compared with recipient control plants 4021, the OsMKK1-OX lines significantly enhanced disease resistance to Xoo, on the contrary, the resistance of OsMKK1-RNAi lines was weakened, demonstrated that OsMKK1 played a positive role in Xa21-mediated disease resistance pathway. A number of pathogenesis-related proteins, including PR1A, PR2 and PR10A showed enhanced expression in OsMKK1-OX lines, supported that these PR genes may be regulated by OsMKK1 to participate in the defense responses. In addition, the agronomic traits of OsMKK1 transgenic plants were affected. Overall, these results revealed the role of OsMKK1 in Xa21-mediated resistance against Xoo and in the normal growth and development process in rice.


Assuntos
Oryza , Oryza/genética , Resistência à Doença/genética , Agricultura , Fenótipo
7.
Small ; 20(7): e2306652, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37806762

RESUMO

Gallium-based liquid metal systems hold vast potential in materials science. However, maximizing their possibilities is hindered by gallium's native oxide and interfacial functionalization. In this study, small-molecule ligands are adopted as surfactants to modify the surface of eutectic gallium indium (EGaIn) nanoparticles and suppress oxidation. Different p-aniline derivatives are explored. Next, the reduction of chloroanric acid (HAuCl4 ) onto these p-aniline ligand modified EGaIn nanoparticles is investigated to produce gold-decorated EGaIn nanosystems. It is found that by altering the concentrations of HAuCl4 or the p-aniline ligand, the formation of gold nanoparticles (AuNPs) on EGaIn can be manipulated. The reduction of interfacial oxidation and presence of AuNPs enhances electrical conductivity, plasmonic performance, wettability, stability, and photothermal performance of all the p-aniline derivative modified EGaIn. Of these, EGaIn nanoparticles covered with the ligand of p-aminobenzoic acid offer the most evenly distributed AuNPs decoration and perfect elimination of gallium oxides, resulting in the augmented electrical conductivity, and highest wettability suitable for patterning, enhanced aqueous stability, and favorable photothermal properties. The proof-of-concept application in photothermal therapy of cancer cells demonstrates significantly enhanced photothermal conversion performance along with good biocompatibility. Due to such unique characteristics, the developed gold-decorated EGaIn nanodroplets are expected to offer significant potential in precise medicine.

8.
Nanomaterials (Basel) ; 13(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38063750

RESUMO

Two-dimensional electron gas (2DEG) at the (100) KTaO3(KTO) surface and interfaces has attracted extensive interest because of its abundant physical properties. Here, light illumination-induced semiconductor-metal transition in the 2DEG at the KTO surface was investigated. 2DEG was formed at the surface of KTO by argon ion bombardment. The 2DEG prepared with a shorter bombardment time (300 s) exhibits semiconducting behavior in the range of 20~300 K in the dark. However, it shows a different resistance behavior, namely, a metallic state above ~55 K and a semiconducting state below ~55 K when exposed to visible light (405 nm) with a giant conductivity increase of about eight orders of magnitude at 20 K. The suppression of the semiconducting behavior is found to be more pronounced with increasing light power. After removing the illumination, the resistance cannot recover quickly, exhibiting persistent photoconductivity. More interestingly, the photoresponse of the 2DEG below 50 K was almost independent of the laser wavelength, although the photon energy is lower than the band gap of KTO. The present results provide experimental support for tuning oxide 2DEG by photoexcitation, suggesting promising applications of KTO-based 2DEG in future electronic and optoelectronic devices.

9.
Exploration (Beijing) ; 3(5): 20220132, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37933282

RESUMO

Osteoarthritis (OA), the commonest arthritis, is characterized by the progressive destruction of cartilage, leading to disability. The Current early clinical treatment strategy for OA often centers on anti-inflammatory or analgesia medication, weight loss, improved muscular function and articular cartilage repair. Although these treatments can relieve symptoms, OA tends to be progressive, and most patients require arthroplasty at the terminal stages of OA. Recent studies have shown a close correlation between joint pain, inflammation, cartilage destruction and synovial cells. Consequently, understanding the potential mechanisms associated with the action of synovial cells in OA could be beneficial for the clinical management of OA. Therefore, this review comprehensively describes the biological functions of synovial cells, the synovium, together with the pathological changes of synovial cells in OA, and the interaction between the cartilage and synovium, which is lacking in the present literature. Additionally, therapeutic approaches based on synovial cells for OA treatment are further discussed from a clinical perspective, highlighting a new direction in the treatment of OA.

10.
Science ; 381(6664): 1350-1356, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37733840

RESUMO

Mixed-matrix membranes (MMMs) that combine processable polymer with more permeable and selective filler have potential for molecular separation, but it remains difficult to control their interfacial compatibility and achieve ultrathin selective layers during processing, particularly at high filler loading. We present a solid-solvent processing strategy to fabricate an ultrathin MMM (thickness less than 100 nanometers) with filler loading up to 80 volume %. We used polymer as a solid solvent to dissolve metal salts to form an ultrathin precursor layer, which immobilizes the metal salt and regulates its conversion to a metal-organic framework (MOF) and provides adhesion to the MOF in the matrix. The resultant membrane exhibits fast gas-sieving properties, with hydrogen permeance and/or hydrogen-carbon dioxide selectivity one to two orders of magnitude higher than that of state-of-the-art membranes.

11.
ACS Sens ; 8(9): 3520-3529, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37669403

RESUMO

A fully integrated device for salivary detection with a sample-in-answer-out fashion is critical for noninvasive point-of-care testing (POCT), especially for the screening of contagious disease infection. Microfluidic paper-based analytical devices (µPADs) have demonstrated their huge potential in POCT due to their low cost and easy adaptation with other components. This study developed a generic POCT platform by integrating a centrifugal microfluidic disc with µPADs to realize sample-to-answer salivary diagnostics. Specifically, a custom centrifugal microfluidic disc integrated with µPADs is fabricated, which demonstrated a high efficiency in saliva treatment. To demonstrate the capability of the integrated device for salivary analysis, the SARS-CoV-2 Nucleocapsid (N) protein, a reliable biomarker for SARS-CoV-2 acute infection, is used as the model analyte. By the chemical treatment of the µPAD surface, and by optimizing the protein immobilization conditions, the on-disc µPADs were able to detect the SARS-CoV-2 N protein down to 10 pg mL-1 with a dynamic range of 10-1000 pg mL-1 and an assay time of 8 min. The integrated device was successfully used for the quantification of the N protein of pseudovirus in saliva with high specificity and demonstrated a comparable performance to the commercial paper lateral flow assay test strips.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , Microfluídica , SARS-CoV-2 , Bioensaio , Dispositivos Lab-On-A-Chip , Teste para COVID-19
12.
Cell Rep Methods ; 3(9): 100591, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37725985

RESUMO

Single-cell sequencing (SCS) is a crucial tool to reveal the genetic and functional heterogeneity of tumors, providing unique insights into the clonal evolution, microenvironment, drug resistance, and metastatic progression of cancers. Microfluidics is a critical component of many SCS technologies and workflows, conferring advantages in throughput, economy, and automation. Here, we review the current landscape of microfluidic architectures and sequencing techniques for single-cell omics analysis and highlight how these have enabled recent applications in oncology research. We also discuss the challenges and the promise of microfluidics-based single-cell analysis in the future of precision oncology.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Microfluídica , Medicina de Precisão , Oncologia , Automação , Microambiente Tumoral/genética
13.
Anal Chim Acta ; 1278: 341614, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37709421

RESUMO

Pathogens cause various infectious diseases and high morbidity and mortality which is a global public health threat. The highly sensitive and specific detection is of significant importance for the effective treatment and intervention to minimise the impact. However, conventional detection methods including culture and molecular method gravely depend on expensive equipment and well-trained skilled personnel, limiting in the laboratory. It remains challenging to adapt in resource-limiting areas, e.g., low and middle-income countries (LMICs). To this end, low-cost, rapid, and sensitive detection tools with the capability of field testing e.g., a portable device for identification and quantification of pathogens, has attracted increasing attentions. Recently, paper-based microfluidic analytical devices (µPADs) have shown a promising tool for rapid and on-site diagnosis, providing a cost-effective and sensitive analytical approach for pathogens detection. The fast turn-round data collection may also contribute to better understanding of the risks and insights on mitigation method. In this paper, critical developments of µPADs for in-field detection of pathogens both for clinical diagnostics and environmental surveillance are reviewed. The future development, and challenges of µPADs for rapid and onsite detection of pathogens are discussed, including using the cross-disciplinary development with, emerging techniques such as deep learning and Internet of Things (IoT).


Assuntos
Monitoramento Ambiental , Microfluídica , Internet , Dispositivos Lab-On-A-Chip , Laboratórios
14.
Clin Gastroenterol Hepatol ; 21(13): 3379-3386.e29, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37660767

RESUMO

BACKGROUND & AIMS: Limited studies have evaluated the burden of inflammatory bowel disease (IBD) in China. We aimed to estimate the incidence of IBD including ulcerative colitis (UC) and Crohn's disease (CD) in urban China. METHODS: The national urban incidence in 2016 was calculated based on urban basic medical insurance from 2012 to 2016 in China by using a 4-year washout period. The incidence in Yinzhou District estimated from the Yinzhou electronic health care record database was used to test the accuracy of the results from insurance data. RESULTS: A total of 95,555 patients with IBD were identified. The incidence in 2016 was 10.04 (95% confidence interval, 6.95-13.71) per 100,000 person-years. The incidence rates of both UC and CD were higher among males than among females. There was a sharp increase in UC incidence before the age of 30 years and stabilization in later years (50-79 years old), whereas CD incidence peaked at 30 to 34 years old and experienced decline subsequently. The incidence of UC was much greater than that of CD, with a UC-to-CD incidence ratio of 12.61. The results from the Yinzhou database confirmed these results. CONCLUSIONS: This study is the first to draw a portrait of the distribution of IBD in urban China. The difference in IBD incidence between urban China and other countries suggests an association between the IBD burden and industrialization process. The accelerating urbanization and industrialization process in China, a country with a population of 1.4 billion people, will likely increase the burden of IBD.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Masculino , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Incidência , Doenças Inflamatórias Intestinais/epidemiologia , Doença de Crohn/epidemiologia , Colite Ulcerativa/epidemiologia , China/epidemiologia
15.
Chem Commun (Camb) ; 59(72): 10813-10816, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37602429

RESUMO

Surface properties of SnO2 and their effects on the growth of perovskite films play a crucial role for perovskite solar cells (PSCs). Herein, a facile strategy to synchronously regulate the buried interface defects and energy level arrangement, as well as improve the crystallinity of perovskite films with alleviated micro-strain by pre-modifying the SnO2 surface with ammonium hexafluorophosphate (NH4PF6) is proposed. The device achieved the promising PCE of 22.50% and improved stability.

16.
Eur J Dermatol ; 33(3): 260-264, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37594333

RESUMO

BACKGROUND: Dermatofibrosarcoma protuberans (DFSP) is a rare cutaneous sarcoma. Limited population-based epidemiological studies on DFSP have been conducted. OBJECTIVES: We aimed to estimate the incidence and disease burden of DFSP in China. MATERIALS & METHODS: We conducted a cross-sectional study using data from the national databases of the Urban Basic Medical Insurance scheme. Cases were identified by ICD code and Chinese language diagnostic terms. National incidence from 2014 to 2016 was estimated by gender and age, and associated medical costs were calculated. RESULTS: A total of 175 patients were confirmed with DFSP from 2014 to 2016. Crude incidence varied from 0.353 per 100,000 (95% CI: 0.203-0.503) in 2014 to 0.367 per 100,000 (95% CI: 0.279-0.455) in 2016. Incidence was higher in males than in females. The first incidence peak was observed between the ages of 20 and 39 years and the highest incidence rates were in those aged over 60 years. Average medical costs of DFSP were higher than the per capita disposable income of residents. CONCLUSION: Incidence of DFSP in mainland urban China is lower than in most developed countries and has remained relatively stable from 2014 to 2016. Further research is expected to clarify the potential pathophysiological mechanisms of DFSP.


Assuntos
Dermatofibrossarcoma , Feminino , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Adulto , Estudos Transversais , Dermatofibrossarcoma/epidemiologia , Incidência , Estudos Retrospectivos , China/epidemiologia
17.
ACS Nano ; 17(15): 14347-14405, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486125

RESUMO

Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.


Assuntos
Corantes Fluorescentes , Substâncias Luminescentes , Corantes Fluorescentes/química , Luminescência , Diagnóstico por Imagem , Atenção à Saúde
18.
Lab Chip ; 23(15): 3328-3352, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37439827

RESUMO

Printable biosensors have gained numerous exciting advancements towards downstream applications in fundamental biomedical research, healthcare, food safety, environmental monitoring and governance, and to name a few. Particularly, paper-based printable biosensors have gained rising popularity in providing affordable platforms due to their merits, such as cost-effective, accurate, simple, and efficient detection of diseases for clinical diagnosis. In addition to advantages and opportunities in point-of-care detection, printable biosensors are also facing challenges. Herein, this review aims to provide a systematic summary of the development of printable biosensors, with a special focus on paper-based printable biosensors. Different types of substrates for printable biosensors are highlighted with a focus on paper substrates which have superior properties like low-cost, simple, flexible, lightweight, recyclable, etc. In addition, current printing technologies to fabricate paper-based sensors, including wax printing, photolithography, screen printing, inkjet printing, and laser printing summarize, are discussed, together with strategies for biomolecular fabrication on substrates and transducers. Finally, we also discuss the challenges and possible future perspectives, hoping to provide researchers and clinicians with informative insights into paper-based printable biosensors for smart and effective point-of-care detection.


Assuntos
Técnicas Biossensoriais , Sistemas Automatizados de Assistência Junto ao Leito , Tecnologia , Impressão
19.
Chem Commun (Camb) ; 59(52): 8075-8078, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37288520

RESUMO

Well-intergrown polycrystalline UiO-66 membranes were successfully synthesized on a polymeric substrate under mild synthesis conditions of a lower temperature and short synthesis time. The resulted UiO-66 membranes with fast water selective transport channels exhibited unprecedentedly high solvent dehydration performance with a permeation flux of ∼6100 g m-2 h-1 and a separation factor of ∼7500, showing great potential for intensification of esterification reaction.

20.
Chem Soc Rev ; 52(14): 4586-4602, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37377411

RESUMO

Zeolites and metal-organic frameworks (MOFs) represent an attractive class of crystalline porous materials that possesses regular pore structures. The inherent porosity of these materials has led to an increasing focus on gas separation applications, encompassing adsorption and membrane separation techniques. Here, a brief overview of the critical properties and fabrication approaches for zeolites and MOFs as adsorbents and membranes is given. The separation mechanisms, based on pore sizes and the chemical properties of nanochannels, are explored in depth, considering the distinct characteristics of adsorption and membrane separation. Recommendations for judicious selection and design of zeolites and MOFs for gas separation purposes are emphasized. By examining the similarities and differences between the roles of nanoporous materials as adsorbents and membranes, the feasibility of zeolites and MOFs from adsorption separation to membrane separation is discussed. With the rapid development of zeolites and MOFs towards adsorption and membrane separation, challenges and perspectives of this cutting-edge area are also addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...