Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38248469

RESUMO

BACKGROUND: Glucosensing elements are widely distributed throughout the body and relay information about circulating glucose levels to the brain via the vagus nerve. However, while anatomical wiring has been established, little is known about the physiological role of the vagus nerve in glucosensing. The contribution of the vagus nerve to inflammation in the fetus is poorly understood. Increased glucose levels and inflammation act synergistically when causing organ injury, but their interplay remains incompletely understood. We hypothesized that vagotomy (Vx) will trigger a rise in systemic glucose levels and this will be enhanced during systemic and organ-specific inflammation. Efferent vagus nerve stimulation (VNS) should reverse this phenotype. METHODS: Near-term fetal sheep (n = 57) were surgically prepared using vascular catheters and ECG electrodes as the control and treatment groups (lipopolysaccharide (LPS), Vx + LPS, Vx + LPS + selective efferent VNS). The experiment was started 72 h postoperatively to allow for post-surgical recovery. Inflammation was induced with LPS bolus intravenously (LPS group, 400 ng/fetus/day for 2 days; n = 23). For the Vx + LPS group (n = 11), a bilateral cervical vagotomy was performed during surgery; of these n = 5 received double the LPS dose, LPS800. The Vx + LPS + efferent VNS group (n = 8) received cervical VNS probes bilaterally distal from Vx in eight animals. Efferent VNS was administered for 20 min on days 1 and 2 +/10 min around the LPS bolus. Fetal arterial blood samples were drawn on each postoperative day of recovery (-72 h, -48 h, and -24 h) as well as at the baseline and seven selected time points (3-54 h) to profile inflammation (ELISA IL-6, pg/mL), insulin (ELISA), blood gas, and metabolism (glucose). At 54 h post-LPS, a necropsy was performed, and the terminal ileum macrophages' CD11c (M1 phenotype) immunofluorescence was quantified to detect inflammation. The results are reported for p < 0.05 and for Spearman R2 > 0.1. The results are presented as the median (IQR). RESULTS: Across the treatment groups, blood gas and cardiovascular changes indicated mild septicemia. At 3 h in the LPS group, IL-6 peaked. That peak was decreased in the Vx + LPS400 group and doubled in the Vx + LPS800 group. The efferent VNS sped up the reduction in the inflammatory response profile over 54 h. The M1 macrophage activity was increased in the LPS and Vx + LPS800 groups only. The glucose and insulin concentrations in the Vx + LPS group were, respectively, 1.3-fold (throughout the experiment) and 2.3-fold higher vs. control (at 3 h). The efferent VNS normalized the glucose concentrations. CONCLUSIONS: The complete withdrawal of vagal innervation resulted in a 72-h delayed onset of a sustained increase in glucose for at least 54 h and intermittent hyperinsulinemia. Under the conditions of moderate fetal inflammation, this was related to higher levels of gut inflammation. The efferent VNS reduced the systemic inflammatory response as well as restored both the concentrations of glucose and the degree of terminal ileum inflammation, but not the insulin concentrations. Supporting our hypothesis, these findings revealed a novel regulatory, hormetic, role of the vagus nerve in the immunometabolic response to endotoxin in near-term fetuses.

2.
World J Clin Cases ; 8(20): 4719-4725, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33195639

RESUMO

BACKGROUND: Developmental dysplasia of the hip is a developmental abnormality of the hip joint that results from hypoplasia during birth and continues to deteriorate after birth. AIM: To observe the effects of magnesium sulfate wet compress, iodophor wet compress, and ice compress on reducing postoperative perineal swelling in children with developmental hip dislocation to provide effective nursing interventions in the clinic. METHODS: A total of 120 children with hip dislocation after surgery in a third-class A hospital from January 2018 to January 2020 were randomly divided into four groups, the magnesium sulfate wet compress group, iodophor wet compress group, ice compress group and the control group. Data such as height, weight, age, duration of surgery, intraoperative blood loss, postoperative body temperature, swelling duration, pain score, and incidence of blisters were collected and analyzed. RESULTS: There were no significant differences in height, weight, age, duration of surgery, intraoperative blood loss, and postoperative body temperature among the four groups of children. Statistical differences were observed between the intervention groups and the control group (P < 0.05). CONCLUSION: All three methods significantly reduced postoperative perineal swelling in children with developmental hip dislocation, reduced the duration of postoperative perineal swelling, reduced pain, and improved the quality of care.

3.
Pediatr Crit Care Med ; 17(4): e165-76, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26914621

RESUMO

OBJECTIVE: Necrotizing enterocolitis of the neonate is an acute inflammatory intestinal disease that can cause necrosis and sepsis. Chorioamnionitis is a risk factor of necrotizing enterocolitis. The gut represents the biggest vagus-innervated organ. Vagal activity can be measured via fetal heart rate variability. We hypothesized that fetal heart rate variability can detect fetuses with incipient gut inflammation. DESIGN: Prospective animal study. SETTING: University research laboratory. SUBJECTS: Chronically instrumented near-term fetal sheep (n = 21). MEASUREMENTS AND MAIN RESULTS: Animals were surgically instrumented with vascular catheters and electrocardiogram to allow manipulation and recording from nonanesthetized animals. In 14 fetal sheep, inflammation was induced with lipopolysaccharide (IV) to mimic chorioamnionitis. Fetal arterial blood samples were drawn at selected time points over 54 hours post lipopolysaccharide for blood gas and cytokines (interleukin-6 and tumor necrosis factor-α enzymelinked immunosorbent assay). Fetal heart rateV was quantified throughout the experiment. The time-matched fetal heart rate variability measures were correlated to the levels of interleukin-6 and tumor necrosis factor-α. Upon necropsy, ionized calcium binding adaptor molecule 1+ (Iba1+), CD11c+ (M1), CD206+ (M2 macrophages), and occludin (leakiness marker) immunofluorescence in the terminal ileum was quantified along with regional Iba1+ signal in the brain (microglia). Interleukin-6 peaked at 3 hours post lipopolysaccharide accompanied by mild cardiovascular signs of sepsis. At 54 hours, we identified an increase in Iba1+ and, specifically, M1 macrophages in the ileum accompanied by increased leakiness, with no change in Iba1 signal in the brain. Preceding this change on tissue level, at 24 hours, a subset of nine fetal heart rate variability measures correlated exclusively to the Iba+ markers of ileal, but not brain, inflammation. An additional fetal heart rate variability measure, mean of the differences of R-R intervals, correlated uniquely to M1 ileum macrophages increasing due to lipopolysaccharide. CONCLUSIONS: We identified a unique subset of fetal heart rate variability measures reflecting 1.5 days ahead of time the levels of macrophage activation and increased leakiness in terminal ileum. We propose that such subset of fetal heart rate variability measures reflects brain-gut communication via the vagus nerve. Detecting such noninvasively obtainable organ-specific fetal heart rate variability signature of inflammation would alarm neonatologists about neonates at risk of developing necrotizing enterocolitis and sepsis. Clinical validation studies are required.


Assuntos
Corioamnionite , Enterocolite Necrosante/diagnóstico , Frequência Cardíaca Fetal , Animais , Cardiotocografia , Corioamnionite/induzido quimicamente , Corioamnionite/imunologia , Citocinas/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Enterocolite Necrosante/etiologia , Enterocolite Necrosante/fisiopatologia , Feminino , Humanos , Íleo/patologia , Recém-Nascido , Lipopolissacarídeos , Ativação de Macrófagos , Gravidez , Estudos Prospectivos , Ovinos
4.
Bioelectron Med ; 3: 1-6, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29308423

RESUMO

Vagus nerve stimulation (VNS) has been used since 1997 for treatment of drug-resistant epilepsy. More recently, an off-label use of VNS has been explored in animal models and clinical trials for treatment of a number of conditions involving the innate immune system. The underlying premise has been the notion of the cholinergic antiinflammatory pathway (CAP), mediated by the vagus nerves. While the macroanatomic substrate - the vagus nerve - is understood, the physiology of the pleiotropic VNS effects and the "language" of the vagus nerve, mediated brain-body communication, remain an enigma. Tackling this kind of enigma is precisely the challenge for and promise of bioelectronic medicine. We review the state of the art of this emerging field as it pertains to developing strategies for use of the endogenous CAP to treat inflammation and infection in various animal models and human clinical trials. This is a systematic PubMed review for the MeSH terms "vagus nerve stimulation AND inflammation." We report the diverse profile of currently used VNS antiinflammatory strategies in animal studies and human clinical trials. This review provides a foundation and calls for devising systematic and comparable VNS strategies in animal and human studies for treatment of inflammation. We discuss species-specific differences in the molecular genetics of cholinergic signaling as a framework to understand the divergence in VNS effects between species. Brain-mapping initiatives are needed to decode vagus-carried brain-body communication before hypothesis-driven treatment approaches can be devised.

5.
J Vis Exp ; (105): e52581, 2015 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-26555084

RESUMO

The chronically instrumented pregnant sheep has been used as a model of human fetal development and responses to pathophysiologic stimuli such as endotoxins, bacteria, umbilical cord occlusions, hypoxia and various pharmacological treatments. The life-saving clinical practices of glucocorticoid treatment in fetuses at risk of premature birth and the therapeutic hypothermia have been developed in this model. This is due to the unique amenability of the non-anesthetized fetal sheep to the surgical placement and maintenance of catheters and electrodes, allowing repetitive blood sampling, substance injection, recording of bioelectrical activity, application of electric stimulation and in vivo organ imaging. Here we describe the surgical instrumentation procedure required to achieve a stable chronically instrumented non-anesthetized fetal sheep model including characterization of the post-operative recovery from blood gas, metabolic and inflammation standpoints.


Assuntos
Embriologia/métodos , Desenvolvimento Fetal/fisiologia , Modelos Animais , Ovinos/fisiologia , Animais , Feminino , Feto/fisiologia , Feto/cirurgia , Hipóxia/fisiopatologia , Gravidez , Ovinos/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...