Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 254(2): 22, 2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34218358

RESUMO

MAIN CONCLUSION: The downregulation of PpPG21 and PpPG22 expression in melting-flesh peach delays fruit softening and hinders texture changes by influencing pectin solubilization and depolymerization. The polygalacturonase (PG)-catalyzed solubilization and depolymerization of pectin plays a central role in the softening and texture formation processes in peach fruit. In this study, the expression characteristics of 15 PpPG members in peach fruits belonging to the melting flesh (MF) and non-melting flesh (NMF) types were analyzed, and virus-induced gene silencing (VIGS) technology was used to identify the roles of PpPG21 (ppa006839m) and PpPG22 (ppa006857m) in peach fruit softening and texture changes. In both MF and NMF peaches, the expression of PpPG1, 10, 12, 23, and 25 was upregulated, whereas that of PpPG14, 24, 35, 38, and 39 was relatively stable or downregulated during shelf life. PpPG1 was highly expressed in NMF fruit, whereas PpPG21 and 22 were highly expressed in MF peaches. Suppressing the expression of PpPG21 and 22 by VIGS in MF peaches significantly reduced PG enzyme activity, maintained the firmness of the fruit during the late shelf life stage, and suppressed the occurrence of the "melting" stage compared with the control fruits. Moreover, the downregulation of PpPG21 and 22 expression also reduced the water-soluble pectin (WSP) content, increased the contents of ionic-soluble pectin (ISP) and covalent-soluble pectin (CSP) and affected the expression levels of ethylene synthesis- and pectin depolymerization-related genes in the late shelf life stage. These results indicate that PpPG21 and 22 play a major role in the development of the melting texture trait of peaches by depolymerizing cell wall pectin. Our results provide direct evidence showing that PG regulates peach fruit softening and texture changes.


Assuntos
Prunus persica , Parede Celular/metabolismo , Regulação para Baixo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Poligalacturonase/metabolismo
2.
Clin Transl Allergy ; 11(3): e12034, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025984

RESUMO

BACKGROUND: Pru p 1 is a major allergen in peach and nectarine, and the different content in varieties may affect the degree of allergic reactions. This study aimed to quantify Pru p 1 levels in representative peach varieties and select hypoallergenic Pru p 1 varieties. METHODS: To obtain monoclonal and polyclonal antibodies, mice and rabbits, respectively, were immunized with recombinant Pru p 1.01 and Pru p 1.02. The Pru p 1 levels in fruits from 83 representative peach varieties was quantified by sandwich enzyme-linked immunosorbent assay (sELISA). nPru p 1 was obtained through specific monoclonal antibody affinity purification and confirmed by Western blot and mass spectrometry. The variable Pru p 1 content of selected varieties was evaluated by Western blot and the expression level of encoding Pru p 1 genes by quantitative polymerase chain reaction. RESULTS: A sELISA method with monoclonal and polyclonal antibodies was built for quantifying Pru p 1 levels in peach. Pru p 1 was mainly concentrated in the peel (0.20-73.44 µg/g, fresh weight), being very low in the pulp (0.05-9.62 µg/g) and not detected in wild peach. For the 78 peach and nectarine varieties, Pru p 1 content varied widely from 0.12 to 6.45 µg/g in whole fruit. We verified that natural Pru p 1 is composed of 1.01 and 1.02 isoallergens, and the Pru p 1 expression level and Pru p 1 band intensity in the immunoblots were in agreement with protein quantity determined by ELISA for some tested varieties. In some cases, the reduced levels of Pru p 1 did not coincide with low Pru p 3 in the same variety in whole fruit, while some ancient wild peach and nectarines contained low levels of both allergens, and late-ripening yellow flesh varieties were usually highly allergenic. CONCLUSION: Pru p 1 content is generally low in peach compared to Pru p 3. Several hypoallergenic Pru p 1 and Pru p 3 varieties, "Zi Xue Tao," "Wu Yue Xian," and "May Fire," were identified, which could be useful in trials for peach allergy patients.

3.
J Agric Food Chem ; 68(16): 4699-4716, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32078318

RESUMO

Long-term low-temperature conditioning (LT-LTC) decreases apple fruit quality, but the underlying physiological and molecular basis is relatively uncharacterized. We identified 12 clusters of differentially expressed genes (DEGs) involved in multiple biological processes (i.e., sugar, malic acid, fatty acid, lipid, complex phytohormone, and stress-response pathways). The expression levels of genes in sugar pathways were correlated with decreasing starch levels during LT-LTC. Specifically, starch-synthesis-related genes (e.g., BE, SBE, and GBSS genes) exhibited downregulated expression, whereas sucrose-metabolism-related gene expression levels were up- or downregulated. The expression levels of genes in the malic acid pathway (ALMT9, AATP1, and AHA2) were upregulated, as well as the content of malic acid in apple fruit during LT-LTC. A total of 151 metabolites, mainly related to amino acids and their isoforms, amines, organic acids, fatty acids, sugars, and polyols, were identified during LT-LTC. Additionally, 35 organic-acid-related metabolites grouped into three clusters, I (3), II (22), and III (10), increased in abundance during LT-LTC. Multiple phytohormones regulated the apple fruit chilling injury response. The ethylene (ET) and abscisic acid (ABA) levels increased at CS2 and CS3, and jasmonate (JA) levels also increased during LT-LTC. Furthermore, the expression levels of genes involved in ET, ABA, and JA synthesis and response pathways were upregulated. Finally, some key transcription factor genes (MYB, bHLH, ERF, NAC, and bZIP genes) related to the apple fruit cold acclimation response were differentially expressed. Our results suggest that the multilayered mechanism underlying apple fruit deterioration during LT-LTC is a complex, transcriptionally regulated process involving cell structures, sugars, lipids, hormones, and transcription factors.


Assuntos
Frutas/química , Frutas/metabolismo , Malus/genética , Temperatura Baixa , Armazenamento de Alimentos , Frutas/genética , Regulação da Expressão Gênica de Plantas , Malus/química , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Controle de Qualidade , Transcrição Gênica
4.
Front Plant Sci ; 9: 1015, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050556

RESUMO

ß-galactosidases are cell wall hydrolases that play an important role in fruit softening. However, PpBGALs mechanism impacting on ethylene-dependent peach fruit softening was still unclear. In this study, we found that PpBGAL4, -6, -8, -10, -16, and -17 may be required for ethylene-dependent peach softening and PpBGAL10, -16 may make a main contribution to it among 17 PpBGALs. Utilization of virus-induced gene silencing (VIGS) showed that fruits were firmer than those of the control at 4 and 6 days after harvest (DAH) when PpBGAL10 and PpBGAL16 expression was down-regulated. Suppression of PpBGAL10 and PpBGAL16 expression also reduced PpPG21 and PpPME3 transcription, and polygalacturonase (PG) and pectinmethylesterases (PME) activity. Overall, total cell wall material and protopectin slowly declined, water-soluble pectin slowly increased, and cellulose and hemicellulose was altered significantly at 4 DAH, relative to control fruit. In addition, PpACO1 expression and ethylene production were also suppressed at 4 DAH because of inhibiting PpBGAL10 and PpBGAL16 expression. These results suggested that down-regulation of PpBGAL10 and PpBGAL16 expression delays peach fruit softening by decreasing PG and PME activity, which inhibits cell wall degradation and ethylene production.

5.
Plant Sci ; 257: 63-73, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28224919

RESUMO

SEPALLATA genes are members of a subfamily of MADS-box transcription factors, and have essential roles in floral organ development and fruit ripening. In this study, the PrupeSEP1 gene was cloned from peach flesh. Its deduced amino acid sequence was very similar to that of MdMADS8 and MdMADS9 in apple and MADS-RIN-like in strawberry. During storage of melting flesh (MF) peach, the pattern of SEP1 expression was similar to that of ethylene biosynthesis and ethylene signal transduction-related gene expression (EIN2 and ETR2). The SEP1 expression level was correlated with that of EIN2 and ETR2. Furthermore, in MF, cell wall modification-related genes (Endo-PG3, EXP2 and PME3), N-glycan processing genes (ß-Hex2 and α-Man) and Lox1 exhibited similar expression patterns to that of SEP1. However, in non-melting flesh (NMF) peach, the SEP1 expression pattern was different from that of MF peach. Moreover, in NMF, only EXP2, LOX1, and α-Man expression patterns were similar to that of SEP1. After SEP1 expression was inhibited by virus-induced gene silencing technique (VIGS) in MF peach, compared with the control, the fruit remained firm and fruit softening was delayed. While expression levels of the ripening and softening related genes, ACS2, EIN2, PME1, Endo-PG3, ACO1, ETR2,ß-Hex2 and Lox1, were significantly decreased in SEP1-silenced peach, the transcription of EXP2 and PME3 were significantly enhanced except at the harvest stage. Yeast one-hybrid verification showed SEP1 can interact with promoter of target genes PGs. Our results indicate SEP1 may regulate fruit ripening and softening of MF peaches, while this regulation may be lost in the NMF peaches.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus persica/crescimento & desenvolvimento , Prunus persica/genética , Transdução de Sinais/genética , Sítios de Ligação , Clonagem Molecular , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Fenótipo , Filogenia , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética
6.
Front Plant Sci ; 7: 147, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26909092

RESUMO

The NAP (NAC-like, activated by AP3/P1) transcription factor belongs to a subfamily of the NAC transcription factor family, and is believed to have an important role in regulating plant growth and development. However, there is very little information about this subfamily in Rosaceous plants. We identified seven NAP genes in the peach genome. PpNAP2 was categorized in the NAP I group, and contained a conserved transcription activation region. The other PpNAP genes belonged to the NAP II group. The expression patterns of the PpNAP genes differed in various organs and developmental stages. PpNAP1 and PpNAP2 were highly expressed in mature and senescing flowers, but not in leaves, fruits, and flower buds. PpNAP3 and PpNAP5 were only expressed in leaves. The PpNAP4 expression level was high in mature and senescing fruits, while PpNAP6 and PpNAP7 expression was up-regulated in mature and senescent leaves and flowers. During the fruit development period, the PpNAP4 and PpNAP6 expression levels rapidly increased during the S1 and S4 stages, which suggests these genes are involved in the first exponential growth phase and fruit ripening. During the fruit ripening and softening period, the PpNAP1, PpNAP4, and PpNAP6 expression levels were high during the early storage period, which was accompanied by a rapid increase in ethylene production. PpNAP1, PpNAP4, and PpNAP6 expression slowly increased during the middle or late storage periods, and peaked at the end of the storage period. Additionally, abscisic acid (ABA)-treated fruits were softer and produced more ethylene than the controls. Furthermore, the PpNAP1, PpNAP4, and PpNAP6 expression levels were higher in ABA-treated fruits. These results suggest that PpNAP1, PpNAP4, and PpNAP6 are responsive to ABA and may regulate peach fruit ripening.

7.
Ying Yong Sheng Tai Xue Bao ; 25(8): 2243-50, 2014 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-25509074

RESUMO

To inquire the different performances of the leaves and fruit quality of Fuji apple tress at various altitudes and their responses to the environmental factors, indices including leaf morphology, anatomy, δ13 C, and fruit quality of the Fuji apple trees at respective altitudes of 1375 m, 1575 m and 1715 m were investigated and their responses to environmental factors were determined following stepwise regression analysis. The results showed that 6 factors like the warmth index, Bailey's index, photosynthetically active radiation (PAR), coldness index, ultraviolet B and the annual precipitation dominantly affected the characteristic parameters of leaves and fruit. Elevation increase was matched by the decreasing warmth index, rising Bailey' s index, intenser PAR, higher coldness index, stronger ultraviolet B and heavier annual precipitation; meanwhile, the leaf structure and fruit quality parameters also displayed evident trends of change accordingly, namely, leaf parameters like leaf thickness, cuticle thickness, ratio of palisade and spongy, maximum conduit diameter, δ13C and nitrogen content per unit area increased gradually, and oppositely, leaf length-width ratio, specific leaf area, stoma length-width ratio and ratio of upper and lower epidermis to the leaf thickness decreased gradually; similarly, fruit parameters such as fruit shape index, fruit hardness, sugar-acid ratio, total color and the a/b-value ascended while the titratable acid and the hue angle descended. With increasing the altitude, the photosynthetic rate and water use efficiency of leaves were enhanced, and the fruit sugar-acid ratio climbed and the fruit flavor and color improved. Therefore, it could be safely concluded that within the altitude range between 1375 and 1715 m, environmental factors at a higher altitude favored Fuji apple growth.


Assuntos
Altitude , Frutas/fisiologia , Malus/fisiologia , Clima , Nitrogênio , Fotossíntese , Folhas de Planta/fisiologia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...