Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 836
Filtrar
1.
Cell Mol Life Sci ; 81(1): 249, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836877

RESUMO

Protein ubiquitination is one of the most important posttranslational modifications (PTMs) in eukaryotes and is involved in the regulation of almost all cellular signaling pathways. The intracellular bacterial pathogen Legionella pneumophila translocates at least 26 effectors to hijack host ubiquitination signaling via distinct mechanisms. Among these effectors, SidC/SdcA are novel E3 ubiquitin ligases with the adoption of a Cys-His-Asp catalytic triad. SidC/SdcA are critical for the recruitment of endoplasmic reticulum (ER)-derived vesicles to the Legionella-containing vacuole (LCV). However, the ubiquitination targets of SidC/SdcA are largely unknown, which restricts our understanding of the mechanisms used by these effectors to hijack the vesicle trafficking pathway. Here, we demonstrated that multiple Rab small GTPases and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are bona fide ubiquitination substrates of SidC/SdcA. SidC/SdcA-mediated ubiquitination of syntaxin 3 and syntaxin 4 promotes their unconventional pairing with the vesicle-SNARE protein Sec22b, thereby contributing to the membrane fusion of ER-derived vesicles with the phagosome. In addition, our data reveal that ubiquitination of Rab7 by SidC/SdcA is critical for its association with the LCV membrane. Rab7 ubiquitination could impair its binding with the downstream effector Rab-interacting lysosomal protein (RILP), which partially explains why LCVs avoid fusion with lysosomes despite the acquisition of Rab7. Taken together, our study reveals the biological mechanisms employed by SidC/SdcA to promote the maturation of the LCVs.


Assuntos
Legionella pneumophila , Fagossomos , Proteínas SNARE , Ubiquitinação , Proteínas rab de Ligação ao GTP , Legionella pneumophila/metabolismo , Humanos , Fagossomos/metabolismo , Fagossomos/microbiologia , Proteínas SNARE/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Animais , Proteínas Qa-SNARE/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Vacúolos/metabolismo , Vacúolos/microbiologia , Células HEK293 , Camundongos , proteínas de unión al GTP Rab7/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Retículo Endoplasmático/metabolismo
2.
Int J Biol Macromol ; 272(Pt 1): 132860, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834117

RESUMO

To explore the adjuvant therapy drugs of low-dose metformin, one homogeneous polysaccharide named APS-D1 was purified from Astragalus membranaceus by DEAE-52 cellulose and Sephadex G-100 column chromatography. Its chemical structure was characterized by molecular weight distribution, monosaccharide composition, infrared spectrum, methylation analysis, and NMR. The results revealed that APS-D1 (7.36 kDa) consisted of glucose, galactose, and arabinose (97.51 %:1.56 %:0.93 %). It consisted of →4)-α-D-Glcp-(1→ residue backbone with →3)-ß-D-Galp-(1→ residue and terminal-α/ß-D-Glcp-(1→ side chains. APS-D1 could significantly improve inflammation (TNF-α, LPS, and IL-10) in vivo. Moreover, APS-D1 improved the curative effect of low-dose metformin without adverse events. APS-D1 combined with low-dose metformin regulated several gut bacteria, in which APS-D1 enriched Staphylococcus lentus to produce l-carnitine (one of 136 metabolites of S. lentus). S. lentus and l-carnitine could improve diabetes, and reduction of S. lentusl-carnitine production impaired diabetes improvement. The combination, S. lentus, and l-carnitine could promote fatty acid oxidation (CPT1) and inhibit gluconeogenesis (PCK and G6Pase). The results indicated that APS-D1 enhanced the curative effect of low-dose metformin to improve diabetes by enriching S. lentus, in which the effect of S. lentus was mediated by l-carnitine. Collectively, these findings support that low-dose metformin supplemented with APS-D1 may be a favorable therapeutic strategy for type 2 diabetes.


Assuntos
Metformina , Polissacarídeos , Staphylococcus , Metformina/farmacologia , Metformina/química , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Staphylococcus/efeitos dos fármacos , Camundongos , Astrágalo/química , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Peso Molecular
3.
Nat Commun ; 15(1): 3688, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693107

RESUMO

Graphene photodetectors have exhibited high bandwidth and capability of being integrated with silicon photonics (SiPh), holding promise for future optical communication devices. However, they usually suffer from a low photoresponsivity due to weak optical absorption. In this work, we have implemented SiPh-integrated twisted bilayer graphene (tBLG) detectors and reported a responsivity of 0.65 A W-1 for telecom wavelength 1,550 nm. The high responsivity enables a 3-dB bandwidth of >65 GHz and a high data stream rate of 50 Gbit s-1. Such high responsivity is attributed to the enhanced optical absorption, which is facilitated by van Hove singularities in the band structure of high-mobility tBLG with 4.1o twist angle. The uniform performance of the fabricated photodetector arrays demonstrates a fascinating prospect of large-area tBLG as a material candidate for heterogeneous integration with SiPh.

4.
Heliyon ; 10(9): e30819, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38774094

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder commonly accompanied by gut dysfunction. EA has shown anti-inflammatory and neuroprotective effects. Here, we aim to explore whether EA can treat Parkinson's disease by restoring the intestinal barrier and modulating NLRP3 inflammasome. We applied 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to establish a PD mouse model and EA at the GV16, LR3, and ST36 for 12 consecutive days. The open-field test results indicated that EA alleviated depression and behavioral defects, upregulated the expressions of tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF), and blocked the accumulation of α-synuclein (α-syn) in the midbrain. Moreover, EA blocked the damage to intestinal tissues of PD mice, indicative of suppressed NLRP3 inflammasome activation and increased gut barrier integrity. Notably, the antibiotic-treated mouse experiment validated that the gut microbiota was critical in alleviating PD dyskinesia and intestinal inflammation by EA. In conclusion, this study suggested that EA exhibited a protective effect against MPTP-induced PD by alleviating behavioral defects, reversing the block of motor dysfunction, and improving the gut barrier by modulating intestinal NLRP3 inflammasome. Above all, this study could provide novel insights into the pathogenesis and therapy of PD.

5.
Clin Exp Pharmacol Physiol ; 51(6): e13861, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38724488

RESUMO

Relevant studies have indicated the association of HCG18 with tumour occurrence and progression. In this study, we observed that PM2.5 can enhance the growth of lung adenocarcinoma cells by modulating the expression of HCG18. Further investigations, including overexpression and knockout experiments, elucidated that HCG18 suppresses miR-195, which in turn upregulates the expression of ATG14, resulting in the upregulation of autophagy. Consequently, exposure to PM2.5 leads to elevated HCG18 expression in lung tissues, which in turn increases Atg14 expression and activates autophagy pathways through inhibition of miR-195, thereby contributing to oncogenesis.


Assuntos
Adenocarcinoma de Pulmão , Proteínas Relacionadas à Autofagia , Autofagia , Progressão da Doença , Neoplasias Pulmonares , MicroRNAs , Material Particulado , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Material Particulado/efeitos adversos , Autofagia/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proliferação de Células/genética , Células A549 , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transporte Vesicular
6.
Sci Data ; 11(1): 474, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724539

RESUMO

Holothuria scabra, a commercially valuable yet ecologically vulnerable tropical holothuroid, has experienced a severe decline in its wild populations, especially in China. Genomic resources are crucial for the development of effective genomic breeding projects and stock conservation strategies to restore these natural populations. Until now, a high-quality, chromosome-level reference genome for H. scabra has not been available. Here, we employed Oxford Nanopore and Hi-C sequencing technologies to assemble and annotate a high-quality, chromosome-level reference genome of H. scabra. The final genome comprised 31 scaffolds with a total length of 1.19 Gb and a scaffold N50 length of 53.52 Mb. Remarkably, 1,191.67 Mb (99.95%) of the sequences were anchored to 23 pseudo-chromosomes, with the longest one spanning 79.75 Mb. A total of 34,418 protein-coding genes were annotated in the final genome, with BUSCO analysis revealing 98.01% coverage of metazoa_odb10 genes, marking a significant improvement compared to the previous report. These chromosome-level sequences and annotations will provide an essential genomic basis for further investigation into molecular breeding and conservation management of H. scabra.


Assuntos
Cromossomos , Genoma , Holothuria , Anotação de Sequência Molecular , Animais , Holothuria/genética , China
7.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798411

RESUMO

The small molecule DYRK1A inhibitor, harmine, induces human beta cell proliferation, expands beta cell mass, enhances expression of beta cell phenotypic genes, and improves human beta cell function i n vitro and in vivo . It is unknown whether the "pro-differentiation effect" is a DYRK1A inhibitor class-wide effect. Here we compare multiple commonly studied DYRK1A inhibitors. Harmine, 2-2c and 5-IT increase expression of PDX1, MAFA, NKX6.1, SLC2A2, PCSK1, MAFB, SIX2, SLC2A2, SLC30A8, ENTPD3 in normal and T2D human islets. Unexpectedly, GNF4877, CC-401, INDY, CC-401 and Leucettine fail to induce expression of these essential beta cell molecules. Remarkably, the pro-differentiation effect is independent of DYRK1A inhibition: although silencing DYRK1A induces human beta cell proliferation, it has no effect on differentiation; conversely, harmine treatment enhances beta cell differentiation in DYRK1A-silenced islets. A careful screen of multiple DYRK1A inhibitor kinase candidate targets was unable to identify pro-differentiation pathways. Overall, harmine, 2-2c and 5-IT are unique among DYRK1A inhibitors in their ability to enhance both beta cell proliferation and differentiation. While beta cell proliferation is mediated by DYRK1A inhibition, the pro-differentiation effects of harmine, 2-2c and 5-IT are distinct, and unexplained in mechanistic terms. These considerations have important implications for DYRK1A inhibitor pharmaceutical development.

9.
Obes Facts ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749411

RESUMO

Introduction The relationship between BMI and early renal function recovery after kidney transplantation is important due to the rising global obesity rates. Methods A retrospective study on 320 patients who received allograft kidney transplantation at Guangxi Medical University Hospital explored the BMI-kidney function relationship using various statistical methods. Mendelian randomization(MR) was also employed to investigate causality. Results Based on the univariate analysis, multivariate linear regression models, and trend analysis, it was found that there were significant positive correlations between BMI and creatinine, urea, and cystatin C on the 7th day after kidney transplantation (P<0.05). The sensitivity analysis further confirmed these correlations in different gender stratification, adolescents, and adults. However, the positive correlation with cystatin C was only significant in males. Additionally, after conducting smooth curve fitting analysis and threshold saturation analysis, it was revealed that the negative correlation between early renal function recovery was most significant when BMI was between 22.0-25.5kg/m2, and early postoperative renal function may be optimal when BMI was at 22.2kg/m2. Finally, the MR analysis confirmed a causal relationship between BMI and renal failure, as indicated by the IVW method (P=0.003), as well as the weighted median estimator (P=0.004). Conclusion This study on kidney transplant patients found that maintaining a BMI within the range of 22.0 to 25.5 kg/m2, with an optimal BMI of 22.2 kg/m2, improves early renal function recovery. This correlation holds true for different age groups and genders. Monitoring and controlling BMI in high-risk patients can enhance post-transplantation renal function.

10.
J Pharm Biomed Anal ; 247: 116262, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38820835

RESUMO

Poria cocos (Schw.) Wolf (PCW) are the dried sclerotia of Poaceae fungus Poria cocos that contain many biological activity ingredients such as polysaccharides and triterpenoids. The carbohydrates from Poria cocos have been proven to possess anti-inflammatory and antioxidant effects. This study aimed to investigate the impact and mechanism of Poria cocos oligosaccharides (PCO) protecting mice against acute lung injury (ALI). We examined the histopathological analysis of lung injury, inflammatory, and edema levels to evaluate the benefits of PCO during ALI. As a result, PCO improved the lipopolysaccharide (LPS) induced lung injury and decreased the inflammatory cytokines of lung tissue. Simultaneously, PCO alleviated lung edema by regulating the expression of aquaporin5 (AQP5) and epithelial Na+ channel protein (ENaC-α). Additionally, untargeted metabolomics was performed on the plasma of ALI mice via HUPLC-Triple-TOF/MS. The results indicated that linoleic acid, linolenic acid, arachidonic acid, carnosine, glutamic acid, and 1-methylhistamine were the biomarkers in ALI mice. Besides, metabolic pathway analysis suggested PCO affected the histidine and fatty acid metabolism, which were closely associated with inflammation and oxidative reaction of the host. Consequently, the effects of PCO inhibiting inflammation and edema might relate to the reducing pro-inflammatory mediators and the reverse of abnormal metabolic pathways.

11.
Autophagy ; : 1-16, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818749

RESUMO

Many bacterial pathogens have evolved effective strategies to interfere with the ubiquitination network to evade clearance by the innate immune system. Here, we report that OTUB1, one of the most abundant deubiquitinases (DUBs) in mammalian cells, is subjected to both canonical and noncanonical ubiquitination during Legionella pneumophila infection. The effectors SidC and SdcA catalyze OTUB1 ubiquitination at multiple lysine residues, resulting in its association with a Legionella-containing vacuole. Lysine ubiquitination by SidC and SdcA promotes interactions between OTUB1 and DEPTOR, an inhibitor of the MTORC1 pathway, thus suppressing MTORC1 signaling. The inhibition of MTORC1 leads to suppression of host protein synthesis and promotion of host macroautophagy/autophagy during L. pneumophila infection. In addition, members of the SidE family effectors (SidEs) induce phosphoribosyl (PR)-linked ubiquitination of OTUB1 at Ser16 and Ser18 and block its DUB activity. The levels of the lysine and serine ubiquitination of OTUB1 are further regulated by effectors that function to antagonize the activities of SidC, SdcA and SidEs, including Lem27, DupA, DupB, SidJ and SdjA. Our study reveals an effectors-mediated complicated mechanism in regulating the activity of a host DUB.Abbreviations: BafA1: bafilomycin A1; BMDMs: bone marrow-derived macrophages; DUB: deubiquitinase; Dot/Icm: defective for organelle trafficking/intracellular multiplication; DEPTOR: DEP domain containing MTOR interacting protein; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; L. pneumophila: Legionella pneumophila; LCV: Legionella-containing vacuole; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; MTORC1: mechanistic target of rapamycin kinase complex 1; OTUB1: OTU deubiquitinase, ubiquitin aldehyde binding 1; PR-Ub: phosphoribosyl (PR)-linked ubiquitin; PTM: posttranslational modification; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SidEs: SidE family effectors; Ub: ubiquitin.

12.
J Hazard Mater ; 472: 134514, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38718511

RESUMO

The removal of crude oil from spent hydrodesulfurization catalysts constitutes the preliminary stage in the recovery process of valuable metals. However, the traditional roasting method for the removal exhibits massive limitations. In view of this, the present study used an ultrasound-assisted surfactant cleaning method to remove crude oil from spent hydrodesulfurization catalysts, which demonstrated effectiveness. Furthermore, the study investigated the mechanism governing the process with calculation and experiments, so as to provide a comprehensive understanding of the cleaning method's efficacy. The surfactant selection was predicated on the performance in the IFT test, with SDBS and TX-100 finally being chosen. Subsequent calculations and analysis were then conducted to elucidate their frontier molecular orbitals, electrostatic potential, and polarity. It has been found that both SDBS and TX-100 possess the smallest LUMO-HOMO energy gap (ΔE), registering at 4.91 eV and 4.80 eV, respectively, and presenting the highest interfacial reactivity. The hydrophilic structure in the surfactant regulates the wettability of the oil-water interface, and the long-chain alkanes have excellent non-polar properties that promote the dissolution of crude oil. The ultrasonic-assisted process further improves the interface properties and enhances the oil removal effect. Surprisingly, the crude oil residue was reduced to 0.25% under optimal conditions. The final phase entailed the techno-economic evaluation of the entire process, revealing that, in comparison to the roasting method, this process saves $0.38 per kilogram of spent HDS catalyst, with the advantages of operational simplicity and emission-free. Generally, this study shed new light on the realization of efficient oil removal, with the salience of green, sustainable, and economical.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38622895

RESUMO

Cognitive dysfunction following anesthesia with agents such as sevoflurane is a significant clinical problem, particularly in elderly patients. This study aimed to explore the protective effects of the phytochemical syringaresinol (SYR) against sevoflurane-induced cognitive deficits in aged Sprague-Dawley rats and to determine the underlying mechanisms involved. We assessed the impact of SYR on sevoflurane-induced cognitive impairment, glial activation, and neuronal apoptosis through behavioral tests (Morris water maze), immunofluorescence, Western blotting for key proteins involved in apoptosis and inflammation, and enzyme-linked immunosorbent assays for interleukin-1ß, tumor necrosis factor-α, and interleukin-6. SYR treatment mitigated sevoflurane-induced cognitive decline, reduced microglial and astrocyte activation (decreased Iba-1 and GFAP expression), and countered neuronal apoptosis (reduced Bax, cleaved-caspase3, and cleaved-PARP expression). SYR also enhanced Sirtuin-1 (SIRT1) expression and reduced p-Tau phosphorylation; these effects were reversed by the SIRT1 inhibitor EX527. SYR exerts neuroprotective effects on sevoflurane-induced cognitive dysfunction by modulating glial activity, apoptotic signaling, and Tau phosphorylation through the SIRT1 pathway. These findings could inform clinical strategies to safeguard cognitive function in patients undergoing anesthesia.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124248, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38599026

RESUMO

Ferroptosis is a type of lipid peroxidation-induced apoptosis brought on by imbalances in iron metabolism and redox. It involves both the thiol-associated anti-ferroptosis pathway and the excessive buildup of reactive oxygen species (ROS), which stimulates the ferroptosis pathway. Determining the precise control mechanism of ferroptosis requires examining the dynamic connection between reactive sulfur species (RSS) and ROS. Cysteine (Cys) and peroxynitrite (ONOO-) are highly active redox species in organisms and play dynamic roles in the ferroptosis process. In this study, a coumarin dye was conjugated with specific response sites for Cys and ONOO-, enabling the simultaneous detection of Cys and ONOO- through the green and red fluorescence channels, respectively (λem = 498 nm for Cys and λem = 565 nm for ONOO-). Using the probe LXB, we monitored the changes in Cys and ONOO- levels in the ferroptosis pathway induced by erastin. The results demonstrate a significant generation of ONOO- and a noticeable decrease in intracellular Cys levels at the beginning upon erastin treatment and finally maintains a relatively low level. This study presents the first probe to investigate the intracellular redox modulation and control between Cys and ONOO- during ferroptosis, providing valuable insights into the potential mutual correlation between Cys and ONOO- in this process.


Assuntos
Cisteína , Ferroptose , Corantes Fluorescentes , Ácido Peroxinitroso , Ferroptose/efeitos dos fármacos , Corantes Fluorescentes/química , Cisteína/metabolismo , Cisteína/análise , Humanos , Ácido Peroxinitroso/análise , Ácido Peroxinitroso/metabolismo , Espectrometria de Fluorescência , Oxirredução , Piperazinas/farmacologia , Piperazinas/química , Cumarínicos/química , Cumarínicos/farmacologia
15.
Nat Commun ; 15(1): 3622, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684741

RESUMO

Vertical semiconducting fins integrated with high-κ oxide dielectrics have been at the centre of the key device architecture that has promoted advanced transistor scaling during the last decades. Single-fin channels based on two-dimensional (2D) semiconductors are expected to offer unique advantages in achieving sub-1 nm fin-width and atomically flat interfaces, resulting in superior performance and potentially high-density integration. However, multi-fin structures integrated with high-κ dielectrics are commonly required to achieve higher electrical performance and integration density. Here we report a ledge-guided epitaxy strategy for growing high-density, mono-oriented 2D Bi2O2Se fin arrays that can be used to fabricate integrated 2D multi-fin field-effect transistors. Aligned substrate steps enabled precise control of both nucleation sites and orientation of 2D fin arrays. Multi-channel 2D fin field-effect transistors based on epitaxially integrated 2D Bi2O2Se/Bi2SeO5 fin-oxide heterostructures were fabricated, exhibiting an on/off current ratio greater than 106, high on-state current, low off-state current, and high durability. 2D multi-fin channel arrays integrated with high-κ oxide dielectrics offer a strategy to improve the device performance and integration density in ultrascaled 2D electronics.

16.
Heliyon ; 10(7): e28093, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560222

RESUMO

Cancer stem cells (CSCs) are considered key contributors to tumor progression, and ferroptosis has been identified as a potential target for CSCs. We have previously shown that butyrate enhances the ferroptosis induced by erastin in lung cancer cell, this study aimed to investigate the impact of butyrate on the progression of lung CSCs. To investigate these effects, we constructed a series of in vitro experiments, including 3D non-adherent sphere-formation, cytometry analysis, assessment of CSC marker expression, cell migration assay, and in vivo tumorigenesis analyses. Additionally, the influence of butyrate on chemotherapeutic sensitivity were determined through both in vitro and in vivo experiments. Mechanistically, immunofluorescence analysis was employed to examine the localization of biotin-conjugated butyrate. We identified that butyrate predominantly localized in the lysosome and concurrently recruited Fe2+ in lysosome. Moreover, butyrate reduced the stability of SLC7A11 protein stability in lung cancer cells through ubiquitination and proteasome degradation. Importantly, the effects of butyrate on lung CSCs were found to be dependent on lysosome Fe2+- and SLC7A11-mediated ferroptosis. In summary, our results demonstrate that butyrate could induce the ferroptosis in lung CSCs by recruiting Fe2+ in lysosome and promoting the ubiquitination-lysosome degradation of SLC7A11 protein.

17.
Nat Plants ; 10(5): 749-759, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641663

RESUMO

Epigenetic gene silencing induced by expanded repeats can cause diverse phenotypes ranging from severe growth defects in plants to genetic diseases such as Friedreich's ataxia in humans. The molecular mechanisms underlying repeat expansion-induced epigenetic silencing remain largely unknown. Using a plant model with a temperature-sensitive phenotype, we have previously shown that expanded repeats can induce small RNAs, which in turn can lead to epigenetic silencing through the RNA-dependent DNA methylation pathway. Here, using a genetic suppressor screen and yeast two-hybrid assays, we identified novel components required for epigenetic silencing caused by expanded repeats. We show that FOURTH ULP GENE CLASS 1 (FUG1)-an uncharacterized SUMO protease with no known role in gene silencing-is required for epigenetic silencing caused by expanded repeats. In addition, we demonstrate that FUG1 physically interacts with ALFIN-LIKE 3 (AL3)-a histone reader that is known to bind to active histone mark H3K4me2/3. Loss of function of AL3 abolishes epigenetic silencing caused by expanded repeats. AL3 physically interacts with the chromodomain protein LIKE HETEROCHROMATIN 1 (LHP1)-known to be associated with the spread of the repressive histone mark H3K27me3 to cause repeat expansion-induced epigenetic silencing. Loss of any of these components suppresses repeat expansion-associated phenotypes coupled with an increase in IIL1 expression with the reversal of gene silencing and associated change in epigenetic marks. Our findings suggest that the FUG1-AL3-LHP1 module is essential to confer repeat expansion-associated epigenetic silencing and highlight the importance of post-translational modifiers and histone readers in epigenetic silencing.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Inativação Gênica , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Expansão das Repetições de DNA/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Histonas/genética
18.
Talanta ; 274: 126028, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599126

RESUMO

Mechanical forces play a crucial role in cellular processes, including ferroptosis, a form of regulated cell death associated with various diseases. However, the mechanical aspects of organelle lipid droplets (LDs) during ferroptosis are poorly understood. In this study, we designed and synthesized a fluorescent probe, TPE-V1, to enable real-time monitoring of LDs' viscosity using a dual-channel fluorescence-on model (red channel at 617 nm and NIR channel at 710 nm). The fluorescent imaging of using TPE-V1 was achieved due to the integrated mechanisms of the twisted intramolecular charge transfer (TICT) and aggregation-induced emission (AIE). Through dual-emission channel fluorescence imaging, we observed the enhanced mechanical energy of LDs triggering cellular mechanosensing, including ferroptosis and cell deformation. Theoretical calculations confirmed the probe's behavior, showing that high-viscosity media prevented the rotation processes and restored fluorescence quenching in low viscosity. These findings suggest that our TICT-TPE design strategy provides a practical approach to study LDs' mechanical properties during ferroptosis. This development enhances our understanding of the interplay between mechanical forces and LDs, contributing to the knowledge of ferroptotic cell death and potential therapeutic interventions targeting dysregulated cell death processes.


Assuntos
Ferroptose , Corantes Fluorescentes , Gotículas Lipídicas , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Corantes Fluorescentes/química , Humanos , Imagem Óptica , Viscosidade , Fluorescência
19.
Harmful Algae ; 133: 102588, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485443

RESUMO

To investigate the detrimental impacts of cyanobacterial bloom, specifically Microcystis aeruginosa, on brackish water ecosystems, the study used Moina mongolica, a cladoceran species, as the test organism. In a chronic toxicology experiment, the survival and reproductive rates of M. mongolica were assessed under M. aeruginosa stress. It was observed that the survival rate of M. mongolica fed with M. aeruginosa significantly decreased with time and their reproduction rate dropped to zero, while the control group remained maintained stable and normal reproduction. To further explore the underlying molecular mechanisms of the effects of M. aeruginosa on M. mongolica, we conducted a transcriptomic analysis on newly hatched M. mongolica cultured under different food conditions for 24 h. The results revealed significant expression differences in 572 genes, with 233 genes significantly up-regulated and 339 genes significantly down-regulated. Functional analysis of these differentially expressed genes identified six categories of physiological functional changes, including nutrition and metabolism, oxidative phosphorylation, neuroimmunology, cuticle and molting, reproduction, and programmed cell death. Based on these findings, we outlined the basic mechanisms of microcystin toxicity. The discovery provides critical insights into the mechanisms of Microcystis toxicity on organisms and explores the response mechanisms of cladocerans under the stress of Microcystis.


Assuntos
Cladocera , Microcystis , Animais , Microcystis/fisiologia , Ecossistema , Perfilação da Expressão Gênica , Águas Salinas
20.
J Cell Mol Med ; 28(6): e18129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38426936

RESUMO

ATP citrate lyase (ACLY), as a key enzyme in lipid metabolism, plays an important role in energy metabolism and lipid biosynthesis of a variety of tumours. Many studies have shown that ACLY is highly expressed in various tumours, and its pharmacological or gene inhibition significantly inhibits tumour growth and progression. However, the roles of ACLY in oesophageal squamous cell carcinoma (ESCC) remain unclear. Here, our data showed that ACLY inhibitor significantly attenuated cell proliferation, migration, invasion and lipid synthesis in different ESCC cell lines, whereas the proliferation, migration, invasion and lipid synthesis of ESCC cells were enhanced after ACLY overexpression. Furthermore, ACLY inhibitor dramatically suppressed tumour growth and lipid metabolism in ESCC cells xenografted tumour model, whereas ACLY overexpression displayed the opposite effect. Mechanistically, ACLY protein harboured acetylated modification and interacted with SIRT2 protein in ESCC cells. The SIRT2 inhibitor AGK2 significantly increased the acetylation level of ACLY protein and inhibited the proliferation and migration of ESCC cells, while overexpression of ACLY partially reversed the inhibitory effect of AGK2 on ESCC cells. Overall, these results suggest that targeting the SIRT2/ACLY signalling axis may be a potential therapeutic strategy for ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , ATP Citrato (pro-S)-Liase , Sirtuína 2/genética , Sirtuína 2/metabolismo , Proliferação de Células , Neoplasias Esofágicas/metabolismo , Lipídeos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...