Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 16(25): 5861-5870, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32530016

RESUMO

Capillary interactions are ubiquitous between colloids trapped at fluid interfaces. Generally, colloids in fluid interfaces have pinned, undulated contact lines that distort the interface around them. To minimize the area, and therefore the energy of these distortions, colloids interact and assemble in a manner that depends on the shape of the host interface. On curved interfaces, capillary interactions direct isolated colloid motion along deviatoric curvature gradients. This directed motion relies on the leading order, long-ranged quadrupolar distortions made by the colloids' undulated pinned contact lines. Here we study pair interactions and dimer formation of colloids on non-uniformly curved fluid interfaces. Pair interaction energies are inferred to be order of 104kBT, and interacting forces are of order 10-1 pN for 10 micron particles adsorbed on interfaces formed around a 250 micron micropost. We compare experiments to analysis for the pair interaction energy, and identify criteria for dimers to form. We also study the formation of trapped structures by multiple particles to discern the influence of the underlying interface shape and the contact line undulations. By comparison to Monte Carlo simulations with potentials of interactions based on analysis, we find that higher order terms in the distortion fields generated by the particles play a major role in the structure formation on the curved interface. These interactions are determined by the particle's contact line and the host interface shape, and can be used to assemble particles independent of their material properties.

2.
Philos Trans A Math Phys Eng Sci ; 374(2072)2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298434

RESUMO

Control over the spatial arrangement of colloids in soft matter hosts implies control over a wide variety of properties, ranging from the system's rheology, optics, and catalytic activity. In directed assembly, colloids are typically manipulated using external fields to form well-defined structures at given locations. We have been developing alternative strategies based on fields that arise when a colloid is placed within soft matter to form an inclusion that generates a potential field. Such potential fields allow particles to interact with each other. If the soft matter host is deformed in some way, the potential allows the particles to interact with the global system distortion. One important example is capillary assembly of colloids on curved fluid interfaces. Upon attaching, the particle distorts that interface, with an associated energy field, given by the product of its interfacial area and the surface tension. The particle's capillary energy depends on the local interface curvature. We explore this coupling in experiment and theory. There are important analogies in liquid crystals. Colloids in liquid crystals elicit an elastic energy response. When director fields are moulded by confinement, the imposed elastic energy field can couple to that of the colloid to define particle paths and sites for assembly. By improving our understanding of these and related systems, we seek to develop new, parallelizable routes for particle assembly to form reconfigurable systems in soft matter that go far beyond the usual close-packed colloidal structures.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.

3.
Langmuir ; 31(40): 11135-42, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26397708

RESUMO

Focal conic domains (FCDs) form in smectic-A liquid crystal films with hybrid anchoring conditions with eccentricity and size distribution that depend strongly on interface curvature. Assemblies of FCDs can be exploited in settings ranging from optics to material assembly. Here, using micropost arrays with different shapes and arrangement, we assemble arrays of smectic flower patterns, revealing their internal structure as well as defect size, location, and distribution as a function of interface curvature, by imposing positive, negative, or zero Gaussian curvature at the free surface. We characterize these structures, relating free surface topography, substrate anchoring strength, and FCD distribution. Whereas the largest FCDs are located in the thickest regions of the films, the distribution of sizes is not trivially related to height, due to Apollonian tiling. Finally, we mold FCDs around microposts of complex shape and find that FCD arrangements are perturbed near the posts, but are qualitatively similar far from the posts where the details of the confining walls and associated curvature fields decay. This ability to mold FCD defects into a variety of hierarchical assemblies by manipulating the interface curvature paves the way to create new optical devices, such as compound eyes, via a directed assembly scheme.

4.
Soft Matter ; 11(34): 6768-79, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26154075

RESUMO

We address the question: how does capillarity propel microspheres along curvature gradients? For a particle on a fluid interface, there are two conditions that can apply at the three phase contact line: either the contact line adopts an equilibrium contact angle, or it can be pinned by kinetic trapping, e.g. at chemical heterogeneities, asperities, or other pinning sites on the particle surface. We formulate the curvature capillary energy for both scenarios for particles smaller than the capillary length and far from any pinning boundaries. The scale and range of the distortion made by the particle are set by the particle radius; we use singular perturbation methods to find the distortions and to rigorously evaluate the associated capillary energies. For particles with equilibrium contact angles, contrary to the literature, we find that the capillary energy is negligible, with the first contribution bounded to fourth order in the product of the particle radius and the deviatoric curvature of the host interface. For pinned contact lines, we find curvature capillary energies that are finite, with a functional form investigated previously by us for disks and microcylinders on curved interfaces. In experiments, we show microspheres migrate along deterministic trajectories toward regions of maximum deviatoric curvature with curvature capillary energies ranging from 6 × 10(3)-5 × 10(4)kBT. These data agree with the curvature capillary energy for the case of pinned contact lines. The underlying physics of this migration is a coupling of the interface deviatoric curvature with the quadrupolar mode of nanometric disturbances in the interface owing to the particle's contact line undulations. This work is an example of the major implications of nanometric roughness and contact line pinning for colloidal dynamics.


Assuntos
Microesferas , Movimento (Física) , Poliestirenos
5.
Proc Natl Acad Sci U S A ; 112(20): 6336-40, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25941380

RESUMO

Rod-like colloids distort fluid interfaces and interact by capillarity. We explore this interaction at the free surface of aligned nematic liquid crystal films. Naive comparison of capillary and elastic energies suggests that particle assembly would be determined solely by surface tension. Here, we demonstrate that, under certain circumstances, the capillary and elastic effects are complementary and each plays an important role. Particles assemble end-to-end, as dictated by capillarity, and align along the easy axis of the director field, as dictated by elasticity. On curved fluid interfaces, however, curvature capillary energies can overcome the elastic orientations and drive particle migration along curvature gradients. Domains of dominant interaction and their transition are investigated.

6.
J Colloid Interface Sci ; 449: 436-42, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25618486

RESUMO

The capillary energy landscape for particles on curved fluid interfaces is strongly influenced by the particle wetting conditions. Contact line pinning has now been widely reported for colloidal particles, but its implications in capillary interactions have not been addressed. Here, we present experiment and analysis for disks with pinned contact lines on curved fluid interfaces. In experiment, we study microdisk migration on a host interface with zero mean curvature; the microdisks have contact lines pinned at their sharp edges and are sufficiently small that gravitational effects are negligible. The disks migrate away from planar regions toward regions of steep curvature with capillary energies inferred from the dissipation along particle trajectories which are linear in the deviatoric curvature. We derive the curvature capillary energy for an interface with arbitrary curvature, and discuss each contribution to the expression. By adsorbing to a curved interface, a particle eliminates a patch of fluid interface and perturbs the surrounding interface shape. Analysis predicts that perfectly smooth, circular disks do not migrate, and that nanometric deviations from a planar circular, contact line, like those around a weakly roughened planar disk, will drive migration with linear dependence on deviatoric curvature, in agreement with experiment.

7.
Soft Matter ; 11(6): 1078-86, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25523158

RESUMO

The assembly of colloids in nematic liquid crystals via topological defects has been extensively studied for spherical particles, and investigations of other colloid shapes have revealed a wide array of new assembly behaviors. We show, using Landau-de Gennes numerical modeling, that nematic defect configurations and colloidal assembly can be strongly influenced by fine details of colloid shape, in particular the presence of sharp edges. For cylinder, microbullet, and cube colloid geometries, we obtain the particles' equilibrium alignment directions and effective pair interaction potentials as a function of simple shape parameters. We find that defects pin at sharp edges, and that the colloid consequently orients at an oblique angle relative to the far-field nematic director that depends on the colloid's shape. This shape-dependent alignment, which we confirm in experimental measurements, raises the possibility of selecting self-assembly outcomes for colloids in liquid crystals by tuning particle geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...