Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2404433, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39005186

RESUMO

Growing demand for wound care resulting from the increasing chronic diseases and trauma brings intense pressure to global medical health service system. Artificial skin provides mechanical and microenvironmental support for wound, which is crucial in wound healing and tissue regeneration. However, challenges still remain in the clinical application of artificial skin since the lack of the synergy effect of necessary performance. In this study, a multi-functional artificial skin is fabricated through microfluidic spinning technology by using core-shell gel nanofiber scaffolds (NFSs). This strategy can precisely manipulate the microstructure of artificial skin under microscale. The as-prepared artificial skin demonstrates superior characteristics including surface wettability, breathability, high mechanical strength, strain sensitivity, biocompatibility and biodegradability. Notably, this artificial skin has the capability to deliver medications in a controlled and sustained manner, thereby accelerating the wound healing process. This innovative approach paves the way for the development of a new generation of artificial skin and introduces a novel concept for the structural design of the unique core-shell gel NFSs.

2.
Langmuir ; 40(31): 16538-16548, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39041610

RESUMO

The theory of heat conduction paths has been widely recognized and widely studied in the research about the thermal conductivity of thermal conductive polymer composites at present. Encapsulating polymer pellets with thermally conductive fillers and processing them into thermally conductive polymer composites is a simple and effective method for constructing heat conduction paths. It is meaningful to investigate the related heat conduction mechanism of this method. Otherwise, this approach can significantly preserve the performance of the polymer substrate, making it highly valuable for practical material applications. In this work, polyethylene-octene elastomer (POE) pellets were encapsulated with thermal conductive fillers by physical absorption. Subsequently, the composite films containing heat conduction paths were fabricated using the encapsulated POE pellets through a heating press. Alumina (Al2O3), boron nitride (BN), and alumina/boron nitride hybrid (Al2O3/BN) fillers were used to prepare Al2O3@POE, BN@POE, and BN/Al2O3@POE composite films to investigate the influence of filler shapes on heat conduction path construction. The influence of the constitute and density of heat conduction paths on the thermal conductivity of composite films was analyzed by infrared thermal imaging, finite element analysis, and thermal resistance theory in detail. Owing to the reserved good adhesion and flexibility of the POE substrate, the composite films could be directly used as thermal interface materials for chip cooling, which presented a good heat dissipation effect. Furthermore, a series of integrated composite materials were prepared by the combination of encapsulated pellets with various functional films (copper foil, aluminum foil, and graphite sheet) through a one-pot heating press, exhibiting a good electromagnetic shielding effect. The performance of the composites and the corresponding preparation method demonstrate the strong significance of this research for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA