Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Int J Biol Macromol ; 266(Pt 2): 131094, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537852

RESUMO

Konjac glucomannan (KGM) hydrolysate exhibit various biological activities and health-promoting effects. Lytic polysaccharide monooxygenases (LPMOs) play an important role on enzymatic degradation of recalcitrant polysaccharides to obtain fermentable sugars. It is generally accepted that LPMOs exhibits high substrate specificity and oxidation regioselectivity. Here, a bacteria-derived SmAA10A, with chitin-active with strict C1 oxidation, was used to catalyse KGM degradation. Through ethanol precipitation, two hydrolysed KGM components (4 kDa (KGM-1) and 5 kDa (KGM-2)) were obtained that exhibited antibacterial activity against Staphylococcus aureus. In natural KGM, KGM-1, and KGM-2, the molar ratios of mannose to glucose were 1:2.19, 1:3.05, and 1:2.87, respectively, indicating that SmAA10A preferentially degrades mannose in KGM. Fourier-transform infrared spectroscopy and scanning electron microscopy imaging revealed the breakage of glycosylic bonds during enzymatic catalysis. The regioselectivity of SmAA10A for KGM degradation was determined based on the fragmentation behaviour of the KGM-1 and KGM-2 oligosaccharides and their NaBD4-reduced forms. SmAA10A exhibited diverse oxidation degradation of KGM and generated single C1-, single C4-, and C1/C4-double oxidised oligosaccharide forms. This study provides an alternative method for obtaining KGM degradation components with antibacterial functions and expands the substrate specificity and oxidation regioselectivity of bacterial LPMOs.


Assuntos
Antibacterianos , Mananas , Oxigenases de Função Mista , Oxirredução , Mananas/química , Mananas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Especificidade por Substrato , Hidrólise
2.
Sci Rep ; 14(1): 5959, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472335

RESUMO

In recent years, human umbilical cord mesenchymal stem cell (hUC-MSC) extracellular vesicles (EVs) have been used as a cell replacement therapy and have been shown to effectively overcome some of the disadvantages of cell therapy. However, the specific mechanism of action of EVs is still unclear, and there is no appropriate system for characterizing the differences in the molecular active substances of EVs produced by cells in different physiological states. We used a data-independent acquisition (DIA) quantitative proteomics method to identify and quantify the protein composition of two generations EVs from three different donors and analysed the function and possible mechanism of action of the proteins in EVs of hUC-MSCs via bioinformatics. By comparative proteomic analysis, we characterized the different passages EVs. Furthermore, we found that adaptor-related protein complex 2 subunit alpha 1 (AP2A1) and adaptor-related protein complex 2 subunit beta 1 (AP2B1) in hUC-MSC-derived EVs may play a significant role in the treatment of Alzheimer's disease (AD) by regulating the synaptic vesicle cycle signalling pathway. Our work provides a direction for batch-to-batch quality control of hUC-MSC-derived EVs and their application in AD treatment.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Doença de Alzheimer/metabolismo , Proteômica , Complexo 2 de Proteínas Adaptadoras/metabolismo , Vesículas Extracelulares/metabolismo
3.
Cardiovasc Diabetol ; 23(1): 76, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378553

RESUMO

BACKGROUND: The triglyceride-glucose (TyG) index is considered a dependable biomarker for gauging insulin resistance. The atherogenic index of plasma (AIP) represents a marker reflecting atherosclerosis. However, there is currently no study specifically exploring the associations of these two biomarkers with the severity of new-onset coronary artery disease (CAD) under different glucose metabolic states. Therefore, this study aims to evaluate the correlations of these two biomarkers with CAD severity in patients newly diagnosed with CAD under various glucose metabolism conditions. METHOD: Totally 570 subjects first administered coronary angiography were enrolled, including 431 first diagnosed CAD patients and 139 non-CAD patients. CAD severity  was gauged by the quantity of narrowed arteries (single-vessel and multi-vessel CAD). According to WHO diabetes guidelines, glucose metabolic states were divided into normal glucose regulation (NGR), pre-diabetes mellitus (Pre-DM), and diabetes mellitus (DM). The relationships of the TyG index and AIP with CAD severity were validated by logistic regression analysis, including adjustment for traditional cardiovascular risk elements and medical treatments. Their predictive efficacy for CAD was evaluated by receiver operating characteristic (ROC) curves. RESULT: The TyG index and AIP were independently correlated with CAD in accordance with logistic regression analysis (both P < 0.05). Regardless of the glucose metabolic states, there was no statistical correlation between the TyG index and CAD severity. However, AIP in NGR patients was significantly related to CAD severity (P < 0.05). The areas under the curve of the TyG index and AIP for predicting CAD were 0.682 and 0.642 (both P < 0.001), respectively, and their optimal cut-off values were 3.210 (Youden index: 0.305) and 0.095 (Youden index:0.246), respectively. CONCLUSION: The TyG index and AIP have significant associations with CAD. The TyG index had no association with CAD severity, regardless of glucose metabolic states. AIP exhibited a discernible link with CAD severity in NGR patients, but not in the pre-DM or DM populations. The TyG index and AIP have similar predictive values for new-onset CAD.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus , Humanos , Glucose , Triglicerídeos , Glicemia/metabolismo , Fatores de Risco , Diabetes Mellitus/diagnóstico , Biomarcadores
4.
Lipids Health Dis ; 23(1): 45, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341581

RESUMO

BACKGROUND: Remnant cholesterol (RC) represents a low-cost and readily measured lipid index that contributes significantly to residual cardiovascular disease risk. The triglyceride-glucose (TyG) index exhibits a significant correlation with cardiovascular disease occurrence. However, RC and the TyG index have rarely been examined for their potentials in predicting coronary artery disease (CAD). Accordingly, the study was designed to validate the correlations of these two biomarkers with CAD and to compare the forecasted values of these two biomarkers for newly diagnosed CAD. METHODS: Totally 570 subjects firstly administered coronary angiography were enrolled, including 431 newly diagnosed CAD cases and 139 individuals without CAD. The individuals were classified into two groups according to CAD diagnosis. RC was derived as total cholesterol content (mmol/L) - (high density lipoprotein cholesterol content + low density lipoprotein cholesterol content; both in mmol/L). The TyG index was determined as ln (fasting triglyceride level [mg/dL] × fasting plasma glucose level [mg/dL])/2. RESULTS: Baseline feature analysis revealed significant differences in RC and the TyG index between the CAD and non-CAD groups (both P < 0.001). RC and the TyG index were independent risk factors for CAD in accordance with logistic regression analysis (both P < 0.05). Moreover, spearman correlation analysis elucidated CAD had a more remarkable correlation with the TyG index compared with RC (both P < 0.001). Furthermore, according to receiver operating characteristic curve analysis, the TyG index was better than RC in predicting CAD. CONCLUSIONS: The TyG index and RC have significant associations with CAD. Compared with RC, the TyG index possesses a closer correlation with CAD and a higher predictive value for CAD.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Humanos , Glucose , Estudos Retrospectivos , Triglicerídeos , Glicemia/análise , Doenças Cardiovasculares/complicações , Fatores de Risco , Biomarcadores , Colesterol
5.
Sci Total Environ ; 916: 170126, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237789

RESUMO

Land use competition among economic development, food security and ecological protection posed challenges for the sustainable development in resource-based cities, especially those represented by coal resource-based cities in China. Predicting future land use change under the coupled framework of shared socioeconomic pathways and representative concentration pathways (SSP-RCPs) was a crucial step in devising sustainable development strategies. In this study, the patch-generated land use simulation (PLUS) model coupled with SSP-RCP scenarios (SSP126, SSP245, SSP585) was used to predict land use changes from year 2020 to 2060, identify key management regions for balancing the goals of ecological protection and food security, and propose corresponding measures. The results showed that, (1) the selected driving factors and model parameters effectively simulated land use changes with an Overall accuracy of 0.95, a Kappa coefficient of 0.92, a Figure of Merit of 0.16, an Exchange error ≤5.69 %, a Shift error ≤1.04 %, and a Quantity error ≤0.67 %. (2) All the scenarios, it was observed that the grassland continued to decrease by 0.86 % to 7.34 %, and the forest and built-up land continued to increase, of which forest increased by 2.34 % to 4.03 %, and built-up land increased by 21.02 % to 61.08 %. Cropland only increased in SSP585 scenario, by 4.76 %, but declining by 2.93 % in SSP126 and SSP245 scenario. (3) In future scenarios, the expansion of built-up land has escalated the risk of cropland and grassland loss. Based on the distribution of key land use conversions, four categories of prioritized land management regions and corresponding measures have been proposed. This provided a potential pathway to mitigate risks associated with the protection of cropland and ecological land. Therefore, this study was instrumental in understanding the mechanisms of land use changes in coal resource-based cities, and provided a reference for land use planning.

6.
Adv Sci (Weinh) ; 11(3): e2303555, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009796

RESUMO

A20-binding inhibitor of NF-κB activation (ABIN1) is a polyubiquitin-binding protein that regulates cell death and immune responses. Although Abin1 is located on chromosome 5q in the region commonly deleted in patients with 5q minus syndrome, the most distinct of the myelodysplastic syndromes (MDSs), the precise role of ABIN1 in MDSs remains unknown. In this study, mice with a mutation disrupting the polyubiquitin-binding site (Abin1Q478H/Q478H ) is generated. These mice develop MDS-like diseases characterized by anemia, thrombocytopenia, and megakaryocyte dysplasia. Extramedullary hematopoiesis and bone marrow failure are also observed in Abin1Q478H/Q478H mice. Although Abin1Q478H/Q478H cells are sensitive to RIPK1 kinase-RIPK3-MLKL-dependent necroptosis, only anemia and splenomegaly are alleviated by RIPK3 deficiency but not by MLKL deficiency or the RIPK1 kinase-dead mutation. This indicates that the necroptosis-independent function of RIPK3 is critical for anemia development in Abin1Q478H/Q478H mice. Notably, Abin1Q478H/Q478H mice exhibit higher levels of type I interferon (IFN-I) expression in bone marrow cells compared towild-type mice. Consistently, blocking type I IFN signaling through the co-deletion of Ifnar1 greatly ameliorated anemia, thrombocytopenia, and splenomegaly in Abin1Q478H/Q478H mice. Together, these results demonstrates that ABIN1(Q478) prevents the development of hematopoietic deficiencies by regulating type I IFN expression.


Assuntos
Anemia , Interferon Tipo I , Trombocitopenia , Animais , Humanos , Camundongos , Poliubiquitina , Esplenomegalia
7.
EMBO Rep ; 24(12): e57925, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37965894

RESUMO

In mammals, the most remarkable T cell variations with aging are the shrinking of the naïve T cell pool and the enlargement of the memory T cell pool, which are partially caused by thymic involution. However, the mechanism underlying the relationship between T-cell changes and aging remains unclear. In this study, we find that T-cell-specific Rip1 KO mice show similar age-related T cell changes and exhibit signs of accelerated aging-like phenotypes, including inflammation, multiple age-related diseases, and a shorter lifespan. Mechanistically, Rip1-deficient T cells undergo excessive apoptosis and promote chronic inflammation. Consistent with this, blocking apoptosis by co-deletion of Fadd in Rip1-deficient T cells significantly rescues lymphopenia, the imbalance between naïve and memory T cells, and aging-like phenotypes, and prolongs life span in T-cell-specific Rip1 KO mice. These results suggest that the reduction and hyperactivation of T cells can have a significant impact on organismal health and lifespan, underscoring the importance of maintaining T cell homeostasis for healthy aging and prevention or treatment of age-related diseases.


Assuntos
Senilidade Prematura , Linfócitos T , Animais , Camundongos , Envelhecimento/genética , Senilidade Prematura/genética , Apoptose , Inflamação , Mamíferos
8.
Regen Med ; 18(9): 695-706, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37554102

RESUMO

Aim: This study investigated the effect of allografting umbilical cord blood mononuclear cells (UCBMCs) into the scrotum on sexual function in male elderly mice. Methods: UCBMCs were injected once into the scrotal sheath cavity of elderly mice. Results: The transplanted UCBMCs survived in the scrotal sheath cavity for 1 month. The mice had significantly increased blood testosterone concentrations, cyclic guanosine monophosphate (cGMP) levels and total nitric oxide synthase (T-NOS) activity in the corpus cavernosum and an increase in the number of mouse matings within 30 min (all p = 0.000). Conclusion: Scrotum-implanted UCBMCs improve the sexual function of male elderly mice through testosterone production and the NOS/cGMP pathway, which may provide an innovative transplantation approach for the treatment of erectile dysfunction.


Assuntos
Disfunção Erétil , Sangue Fetal , Humanos , Camundongos , Masculino , Animais , Idoso , Sangue Fetal/metabolismo , Escroto/metabolismo , Disfunção Erétil/metabolismo , Pênis/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Testosterona/metabolismo , Testosterona/farmacologia
9.
Front Oncol ; 13: 1083216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035137

RESUMO

Background and Purpose: Radiomics features and The Visually AcceSAble Rembrandt Images (VASARI) standard appear to be quantitative and qualitative evaluations utilized to determine glioma grade. This study developed a preoperative model to predict glioma grade and improve the efficacy of clinical strategies by combining these two assessment methods. Materials and Methods: Patients diagnosed with glioma between March 2017 and September 2018 who underwent surgery and histopathology were enrolled in this study. A total of 3840 radiomic features were calculated; however, using the least absolute shrinkage and selection operator (LASSO) method, only 16 features were chosen to generate a radiomic signature. Three predictive models were developed using radiomic features and VASARI standard. The performance and validity of models were evaluated using decision curve analysis and 10-fold nested cross-validation. Results: Our study included 102 patients: 35 with low-grade glioma (LGG) and 67 with high-grade glioma (HGG). Model 1 utilized both radiomics and the VASARI standard, which included radiomic signatures, proportion of edema, and deep white matter invasion. Models 2 and 3 were constructed with radiomics or VASARI, respectively, with an area under the receiver operating characteristic curve (AUC) of 0.937 and 0.831, respectively, which was less than that of Model 1, with an AUC of 0.966. Conclusion: The combination of radiomics features and the VASARI standard is a robust model for predicting glioma grades.

10.
Sci Adv ; 8(49): eadd4220, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36475801

RESUMO

To adapt to changes in environmental cues, Pseudomonas aeruginosa produces an array of virulence factors to survive the host immune responses during infection. Metabolic products contribute to bacterial virulence; however, only a limited number of these signaling receptors have been explored in detail for their ability to modulate virulence in bacteria. Here, we characterize the metabolic pathway of 2-methylcitrate cycle in P. aeruginosa and unveil that PmiR served as a receptor of 2-methylisocitrate (MIC) to govern bacterial virulence. Crystallographic studies and structural-guided mutagenesis uncovered several residues crucial for PmiR's allosteric activation by MIC. We also demonstrated that PmiR directly repressed the pqs quorum-sensing system and subsequently inhibited pyocyanin production. Moreover, mutation of pmiR reduces bacterial survival in a mouse model of acute pneumonia infection. Collectively, this study identified P. aeruginosa PmiR as an important metabolic sensor for regulating expression of bacterial virulence genes to adapt to the harsh environments.


Assuntos
Pseudomonas aeruginosa , Animais , Camundongos , Cristalografia
12.
Immunohorizons ; 6(7): 465-475, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858757

RESUMO

Caspase-8 (Casp8) suppresses receptor-interacting protein kinase-3 (RIPK3)/mixed lineage kinase domain-like protein (MLKL)-dependent necroptosis, demonstrated by the genetic evidence that deletion of Ripk3 or Mlkl prevented embryonic lethality of Casp8-deficient mice. However, the detailed mechanisms by which Casp8 deficiency triggers necroptosis during embryonic development remain unclear. In this article, we show that Casp8 deletion caused formation of the RIPK1-RIPK3 necrosome in the yolk sac, leading to vascularization defects, prevented by MLKL and RIPK3 deficiency, or RIPK3 RHIM mutant (RIPK3 V448P), but not by the RIPK1 kinase-dead mutant (RIPK1 K45A). In addition, Ripk1K45A/K45ACasp8 -/- mice died on embryonic day 14.5, which was delayed to embryonic day 17.5 by ablation of one allele in Ripk1 and was completely rescued by ablation of Mlkl Our results revealed an in vivo role of RIPK3 RHIM and RIPK1K45A scaffold-mediated necroptosis in Casp8 deficiency embryonic development and suggested that the Casp8-deficient yolk sac might be implicated in identifying novel regulators as an in vivo necroptotic model.


Assuntos
Necroptose , Proteínas Quinases , Animais , Caspase 8/genética , Caspase 8/metabolismo , Desenvolvimento Embrionário , Camundongos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
13.
Stem Cell Res Ther ; 13(1): 310, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841116

RESUMO

BACKGROUND: Tracheal fistulas (TF) can be dangerous and even fatal in patients. The current treatment is really challenging. Previous studies reported that mesenchymal stem cells (MSCs) could be used to treat respiratory tract fistulas. Stem cells from human exfoliated deciduous teeth (SHED) are considered to be MSC-like cells that may also have the potential to treat the tracheal fistulas. In this study, we investigated the therapeutic effects of SHED in rat tracheal fistula models. METHODS: A total of 80 SD rats were randomly divided into five groups: a sham-operated group, a local PBS group (L-PBS), an intravenous PBS group (I-PBS), a local SHED treatment group (L-SHED), and an intravenous SHED treatment group (I-SHED). The L-SHED and I-SHED groups were given a topical application around the fistula or an intravenous injection of 1*107 SHED via the tail vein, respectively, while the L-PBS and I-PBS groups were given an equivalent volume of PBS through local or intravenous administration. A stereomicroscope was used to observe fistula healing on the 2nd, 3rd, and 5th days following transplantation. On the 7th day, the survival of SHED was observed by immunofluorescence. The pathology of the lungs and fistulas was observed by hematoxylin and eosin (H&E) and Masson staining. The expression levels of the Toll-like receptor 4 (TLR4), interleukin (IL)-1ß, IL-33, and IL-4 were measured using immunohistochemistry. The expression levels of TLR4, high mobility group box 1 (HMGB1), and myeloid differentiation factor 88 (MYD88) were studied using western blotting. On day 14, airway responsiveness of rats was detected and analyzed. RESULTS: Fistula healing in the L-SHED and I-SHED groups was faster than that in their respective PBS groups after transplantation. The fistula diameters in the L-SHED and I-SHED groups were significantly smaller than those in the L-PBS and I-PBS groups on the 3rd day. Moreover, the phenomenon of fibroblast proliferation and new blood vessel growth around the fistula seemed more pronounced in the L-SHED and I-SHED groups. Although no discernible difference was found in airway responsiveness after SHED treatment, the degree of inflammation in the lungs was reduced by intravenous SHED treatment. However, there was no significant reduction in lung inflammation by local SHED treatment. The expression levels of IL-1ß and IL-33 were decreased in the I-SHED group, while IL-4 was elevated compared with the I-PBS group. Interestingly, intravenous SHED treatment inhibited the activation of HMGB1/TLR4/MYD88 in the lung tissues of TF rats. CONCLUSIONS: SHED transplantation accelerated the rate of fistula healing in rats. Intravenous SHED treatment reduced lung inflammation. Thus, SHED may have potential in the treatment of tracheal fistula, providing hope for future therapeutic development for TF.


Assuntos
Proteína HMGB1 , Fístula do Sistema Respiratório , Animais , Proteína HMGB1/metabolismo , Humanos , Interleucina-33/metabolismo , Interleucina-4/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Dente Decíduo
14.
Cell Death Differ ; 29(10): 2034-2045, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35430614

RESUMO

ABIN1 is a polyubiquitin-binding protein known to regulate NF-κB activation and cell death signaling. Mutations in Abin1 can cause severe immune diseases in human, such as psoriasis, systemic lupus erythematosus, and systemic sclerosis. Here, we generated mice that disrupted the ubiquitin-binding domain of ABIN1 (Abin1UBD/UBD) died during later embryogenesis owing to TNFR1-mediated cell death, similar to Abin1-/- mice. Abin1UBD/UBD cells were rendered sensitive to TNF-α-induced apoptosis and necroptosis as the inhibition of ABIN1UBD and A20 recruitment to the TNF-RSC complex leads to attenuated RIPK1 deubiquitination. Accordingly, the embryonic lethality of Abin1UBD/UBD mice was rescued via crossing with RIPK1 kinase-dead mice (Ripk1K45A/K45A) or the co-deletion of Ripk3 and one allele of Fadd, but not by the loss of Ripk3 or Mlkl alone. Unexpectedly, Abin1UBD/UBD mice with the co-deletion of Ripk3 and both Fadd alleles died at E14.5. This death was caused by spontaneous RIPK1 ubiquitination-dependent multiple inflammatory cytokines over production and could be rescued by the co-deletion of Ripk1 or Tnfr1 combined with Ifnar. Collectively, these data demonstrate the importance of the ABIN1 UBD domain, which mediates the ABIN1-A20 axis, at limiting RIPK1 activation-dependent cell death during embryonic development. Furthermore, our findings reveal a previously unappreciated ubiquitin pathway that regulates RIPK1 ubiquitination by FADD/Casp8 to suppress spontaneous IKKε/TBK1 activation.


Assuntos
Quinase I-kappa B , Receptores Tipo I de Fatores de Necrose Tumoral , Animais , Apoptose/genética , Morte Celular/genética , Humanos , Quinase I-kappa B/metabolismo , Inflamação/metabolismo , Camundongos , NF-kappa B/metabolismo , Poliubiquitina/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 42(5): 613-631, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35387479

RESUMO

BACKGROUND: Macrophages are involved in the pathogenesis of pulmonary arterial hypertension (PAH). Caspase-8, an apical component of cell death pathways, is significantly upregulated in macrophages of PAH animal models. However, its role in PAH remains unclear. Caspase-8 plays a critical role in regulating inflammatory responses via inflammasome activation, cell death, and cytokine induction. This study investigated the mechanism of regulation of IL-1ß (interleukin 1ß) activation in macrophages by caspase-8. METHODS: A hypoxia + SU5416-induced PAH mouse model and monocrotaline-induced rat model of PAH were constructed and the role of caspase-8 was analyzed. RESULTS: Caspase-8 and cleaved-caspase-8 were significantly upregulated in the lung tissues of SU5416 and hypoxia-treated PAH mice and monocrotaline-treated rats. Pharmacological inhibition of caspase-8 alleviated PAH compared with wild-type mice, observed as a significant reduction in right ventricular systolic pressure, ratio of right ventricular wall to left ventricular wall plus ventricular septum, pulmonary vascular media thickness, and pulmonary vascular muscularization; caspase-8 ablated mice also showed significant remission. Mechanistically, increased proliferation of pulmonary arterial smooth muscle cellss is closely associated with activation of the NLRP3 (NOD [nucleotide oligomerization domain]-, LRR [leucine-rich repeat]-, and PYD [pyrin domain]-containing protein 3) inflammasome and the IL-1ß signaling pathway. Although caspase-8 did not affect extracellular matrix synthesis, it promoted inflammatory cell infiltration and pulmonary arterial smooth muscle cell proliferation via NLRP3/IL-1ß activation during the development stage of PAH. CONCLUSIONS: Taken together, our study suggests that macrophage-derived IL-1ß via caspase-8-dependent canonical inflammasome is required for macrophages to play a pathogenic role in pulmonary perivascular inflammation.


Assuntos
Hipertensão Pulmonar , Animais , Caspase 1/metabolismo , Caspase 8/metabolismo , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/genética , Hipóxia/complicações , Inflamassomos/metabolismo , Inflamação/complicações , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Camundongos , Monocrotalina/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos
16.
New Phytol ; 235(1): 276-291, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35118662

RESUMO

Sea buckthorn (Hippophae rhamnoides), a horticulturally multipurpose species in the family Elaeagnaceae, can build associations with Frankia actinomycetes to enable symbiotic nitrogen-fixing. Currently, no high-quality reference genome is available for an actinorhizal plant, which greatly hinders the study of actinorhizal symbiotic nodulation. Here, by combining short-read, long-read and Hi-C sequencing technologies, we generated a chromosome-level reference genome of H. rhamnoides (scaffold N50: 65 Mb, and genome size: 730 Mb) and predicted 30 812 protein-coding genes mainly on 12 pseudochromosomes. Hippophae rhamnoides was found to share a high proportion of symbiotic nodulation genes with Medicago truncatula, implying a shared molecular mechanism between actinorhizal and rhizobial symbioses. Phylogenetic analysis clustered the three paralogous NODULE INCEPTION (NIN) genes of H. rhamnoides with those of other nodulating species, forming the NIN group that most likely evolved from the ancestral NLP group. The genome of H. rhamnoides will help us to decipher the underlying genetic programming of actinorhizal symbiosis, and our high-quality genome and transcriptomic resources will make H. rhamnoides a new excellent model plant for actinorhizal symbiosis research.


Assuntos
Frankia , Hippophae , Rhizobium , Frankia/genética , Hippophae/genética , Filogenia , Plantas , Rhizobium/genética , Simbiose/genética
17.
Cell Death Differ ; 29(8): 1500-1512, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35064213

RESUMO

Caspase-8 is an initiator of death receptor-induced apoptosis and an inhibitor of RIPK3-MLKL-dependent necroptosis. In addition, caspase-8 has been implicated in diseases such as lymphoproliferation, immunodeficiency, and autoimmunity in humans. Although auto-cleavage is indispensable for caspase-8 activation, its physiological functions remain poorly understood. Here, we generated a caspase-8 mutant lacking E385 in auto-cleavage site knock-in mouse (Casp8ΔE385/ΔE385). Casp8ΔE385/ΔE385 cells were expectedly resistant to Fas-induced apoptosis, however, Casp8ΔE385/ΔE385 cells could switch TNF-α-induced apoptosis to necroptosis by attenuating RIPK1 cleavage. More importantly, CASP8(ΔE385) sensitized cells to RIPK3-MLKL-dependent necroptosis through promoting complex II formation and RIPK1-RIPK3 activation. Notably, Casp8ΔE385/ΔE385Ripk3-/- mice partially rescued the perinatal death of Ripk1-/- mice by blocking apoptosis and necroptosis. In contrast to the Casp8-/-Ripk3-/- and Casp8-/-Mlkl-/- mice appearing autoimmune lymphoproliferative syndrome (ALPS), both Casp8ΔE385/ΔE385Ripk3-/- and Casp8ΔE385/ΔE385Mlkl-/- mice developed transplantable lymphopenia that could be significantly reversed by RIPK1 heterozygosity, but not by RIPK1 kinase dead mutation. Collectively, these results demonstrate previously unappreciated roles for caspase-8 auto-cleavage in regulating necroptosis and maintaining lymphocytes homeostasis.


Assuntos
Caspase 8 , Linfopenia , Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Apoptose/fisiologia , Caspase 8/genética , Caspase 8/metabolismo , Morte Celular , Humanos , Linfopenia/genética , Camundongos , Camundongos Knockout , Necroptose , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fatores de Transcrição/metabolismo
18.
Sci Rep ; 11(1): 22149, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34773055

RESUMO

Because of the complex etiology, the treatment of gastric cancer is a formidable challenge for contemporary medical. The current treatment method focuses on traditional surgical procedures, supplemented by other treatments. Among these other treatments, Traditional Chinese Medicine (TCM) plays an important role. Here, we used the systems pharmacology approach to reveal the potential molecular mechanism of PRGRC on gastric cancer which composes of Pinellia ternata (Thunb.) Breit., Rheum palmatum L., Gentiana scabra Bunge, Radix Aucklandiae and Citrus aurantium L. This approach combines pharmacokinetics analysis with pharmacodynamics evaluation for the active compounds screening, targets prediction and pathways assessing. Firstly, through pharmacokinetic evaluation and target prediction models, 83 potential compounds and 184 gastric cancer-related targets were screened out. Then, the results of network analysis suggested that the targets of PRGRC were mainly involved two aspects: apoptosis and inflammation. Finally, we verified the reliability of the above analysis at the cellular level by using naringenin and luteolin with good pharmacokinetic activity as representative compounds. Overall, we found that PRGRC could influence the development of gastric cancer from a multi-scale perspective. This study provided a new direction for analyzing the mechanism of TCM.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa/métodos , Neoplasias Gástricas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacocinética , Flavanonas/farmacocinética , Flavanonas/farmacologia , Humanos , Inflamação/tratamento farmacológico , Luteolina/farmacocinética , Luteolina/farmacologia , Farmacologia em Rede , Extratos Vegetais/farmacocinética , Extratos Vegetais/farmacologia
19.
Front Pharmacol ; 12: 633566, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679418

RESUMO

Background: Chronic renal failure (CRF) results in significant dyslipidemia and profound changes in lipid metabolism. Polyporus umbellatus (PPU) has been shown to prevent kidney injury and subsequent kidney fibrosis. Methods: Lipidomic analysis was performed to explore the intrarenal profile of lipid metabolites and further investigate the effect of PPU and its main bioactive component, ergone, on disorders of lipid metabolism in rats induced by adenine. Univariate and multivariate statistical analyses were performed for choosing intrarenal differential lipid species in CRF rats and the intervening effect of n-hexane extract of PPU and ergone on CRF rats. Results: Compared with control group, decreased creatinine clearance rate indicated declining kidney function in CRF group. Based on the lipidomics, we identified 65 lipid species that showed significant differences between CRF and control groups. The levels of 12 lipid species, especially fatty acyl lipids including docosahexaenoic acid, docosapentaenoic acid (22n-3), 10,11-Dihydro-12R-hydroxy-leukotriene C4, 3-hydroxydodecanoyl carnitine, eicosapentaenoic acid, hypogeic acid and 3-hydroxypentadecanoic acid had a strong linear correlation with creatinine clearance rate, which indicated these lipid species were associated with impaired renal function. In addition, receiver operating characteristics analysis showed that 12 lipid species had high area under the curve values with high sensitivity and specificity for differentiating CRF group from control group. These changes are related to the perturbation of fatty acyl metabolism. Treatment with PPU and ergone improved the impaired kidney function and mitigated renal fibrosis. Both chemometrics and cluster analyses showed that rats treated by PPU and ergone could be separated from CRF rats by using 12 lipid species. Intriguingly, PPU treatment could restore the levels of 12 lipid species, while treatment with ergone could only reverse the changes of six fatty acids in CRF rats. Conclusion: Altered intrarenal fatty acyl metabolites were implicated in pathogenesis of renal fibrosis. PPU and ergone administration alleviated renal fibrosis and partially improved fatty acyl metabolism. These findings suggest that PPU exerted its renoprotective effect by regulating fatty acyl metabolism as a potential biochemical mechanism. Therefore, these findings indicated that fatty acyl metabolism played an important role in renal fibrosis and could be considered as an effective therapeutic avenue against renal fibrosis.

20.
Metabolites ; 11(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672315

RESUMO

Chronic renal failure (CRF) is an irreversible deterioration of the renal functions that characterized by fluid electrolyte unbalance and metabolic-endocrine dysfunctions. Increasing evidence demonstrated that metabolic disturbances, especially dyslipidemia and profound changes in lipid and lipoprotein metabolism were involved in CRF. Identification of lipids associated with impaired kidney functions may play important roles in the understanding of biochemical mechanism and CRF treatment. Ultra-performance liquid chromatography coupled with high-definition mass spectrometry-based lipidomics was performed to identify important differential lipids in adenine-induced CRF rats and investigate the undergoing anti-fibrotic mechanism of Polyporus umbellatus (PPU) and ergone (ERG). Linear correlation analysis was performed between lipid species intensities and creatinine levels in serum. Adenine-induced rats exhibited declining kidney function and renal fibrosis. Compared with control rats, a panel of lipid species was identified in the serum of CRF rats. Our further study demonstrated that eight lipids, including leukotrienes and bile acids, presented a strong linear correlation with serum creatinine levels. In addition, receiver operating characteristics analysis showed that eight lipids exhibited excellent area under the curve for differentiating CRF from control rats, with high sensitivity and specificity. The aberrant changes of clinical biochemistry data and dysregulation of eight lipids could be significantly improved by the administration of PPU and ergone. In conclusion, CRF might be associated with the disturbance of leukotriene metabolism, bile acid metabolism and lysophospholipid metabolism. The levels of eicosanoids and bile acids could be used for indicating kidney function impairment in CRF. PPU could improve renal functions and either fully or partially reversed the levels of eicosanoids and bile acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...