Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116546, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603885

RESUMO

Nanomaterials possess unusual physicochemical properties including unique optical, magnetic, electronic properties, and large surface-to-volume ratio. However, nanomaterials face some challenges when they were applied in the field of biomedicine. For example, some nanomaterials suffer from the limitations such as poor selectivity and biocompatibility, low stability, and solubility. To address the above-mentioned obstacles, functional nucleic acid has been widely served as a powerful and versatile ligand for modifying nanomaterials because of their unique characteristics, such as ease of modification, excellent biocompatibility, high stability, predictable intermolecular interaction and recognition ability. The functionally integrating functional nucleic acid with nanomaterials has produced various kinds of nanocomposites and recent advances in applications of functional nucleic acid decorated nanomaterials for cancer imaging and therapy were summarized in this review. Further, we offer an insight into the future challenges and perspectives of functional nucleic acid decorated nanomaterials.


Assuntos
Nanoestruturas , Neoplasias , Ácidos Nucleicos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Nanoestruturas/química , Ácidos Nucleicos/administração & dosagem , Ácidos Nucleicos/química , Animais
2.
Cancer Med ; 12(17): 17766-17775, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37584196

RESUMO

BACKGROUND: The innovative combination of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) has established a new chapter of curative approach in acute promyelocytic leukemia (APL). The disease characteristics and prognostic influence of additional cytogenetic abnormalities (ACA) in APL with modern therapeutic strategy need to be elucidated. METHODS: In the present study, we retrospectively investigated disease features and prognostic power of ACA in 171 APL patients treated with ATRA-ATO-containing regimens. RESULTS: Patients with ACA had markedly decreased hemoglobin levels than that without ACA (p = 0.021). Risk stratification in the ACA group was significantly worse than that in the non-ACA group (p = 0.032). With a median follow-up period of 62.0 months, worse event-free survival (EFS) was demonstrated in patients harboring ACA. Multivariate analysis showed that ACA was an independent adverse factor for EFS (p = 0.033). By further subgroup analysis, in CD34 and CD56 negative APL, patients harboring ACA had inferior EFS (p = 0.017; p = 0.037). CONCLUSIONS: To sum up, ACA remains the independent prognostic value for EFS, we should build risk-adapted therapeutic strategies in the long-term management of APL when such abnormalities are detected.


Assuntos
Arsenicais , Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Intervalo Livre de Progressão , Estudos Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Tretinoína/uso terapêutico , Aberrações Cromossômicas , Óxidos/uso terapêutico , Arsenicais/uso terapêutico , Resultado do Tratamento
3.
Mikrochim Acta ; 190(7): 268, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37338607

RESUMO

A novel fluorescent strategy has been developed by using an enzymatic reaction modulated DNA assembly on graphitic carbon nitride nanosheets (CNNS) for the detection of acetylcholinesterase (AChE) activity and its inhibitors. The two-dimensional and ultrathin-layer CNNS-material was successfully synthesized through a chemical oxidation and ultrasound exfoliation method. Because of its excellent adsorption selectivity to ssDNA over dsDNA and superior quenching ability toward the fluorophore labels, CNNS were employed to construct a sensitive fluorescence sensing platform for the detection of AChE activity and inhibition. The detection was based on enzymatic reaction modulated DNA assembly on CNNS, which involved the specific AChE-catalyzed reaction-mediated DNA/Hg2+ conformational change and subsequent signal transduction and amplification via hybridization chain reaction (HCR). Under the excitation at 485 nm, the fluorescence signal from 500 to 650 nm (λmax = 518 nm) of the developed sensing system was gradually increased with increasing concentration of AChE. The quantitative determination range of AChE is from 0.02 to 1 mU/mL and the detection limit was 0.006 mU/mL. The developed strategy was successfully applied to the assay of AChE in human serum samples, and can also be used to effectively screen AChE inhibitors, showing great promise providing a robust and effective platform for AChE-related diagnosis, drug screening, and therapy.


Assuntos
Acetilcolinesterase , Grafite , Humanos , Fluorescência , DNA , Grafite/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-36293633

RESUMO

The eutrophication of coastal water has been a critical environmental problem in China's offshore areas. How to effectively assess the status of coastal waters is key for pollution treatment and environmental protection. In recent years, eutrophication-symptom-based and multi-indicator methods, termed "phase II" methods, have been gradually adopted to assess the eutrophication status in some coastal waters in China and have achieved success. The cumulative quantile is typically selected to determine the characteristic value of an indicator in "phase II" methods. The influence of small-scale damaged water bodies on eutrophication assessment may be exaggerated, which often leads to the overassessment of the eutrophication status. In this study, the area ratio method was integrated into the assessment of the estuarine trophic status (ASSETS) method in order to assess the eutrophication status of Xiamen Bay in 2016. The results indicated that, in 2016, the eutrophication status of Xiamen Bay coastal waters was moderate and exhibited spatiotemporal variation. The area ratio method can effectively reduce the effect of small-scale coastal waters with extremely high eutrophication on the overassessment of eutrophication at the broader scale, allowing the eutrophication status to be better reflected, even with limited observation data. The centralized distribution of pollution sources and poor hydrodynamic conditions are the main reasons for the aforementioned phenomenon. Controlling the pollution discharge from the Jiulong River in flood seasons is key to reducing eutrophication in Xiamen coastal waters.


Assuntos
Baías , Monitoramento Ambiental , Monitoramento Ambiental/métodos , Eutrofização , Rios , Água , China
5.
Analyst ; 146(18): 5567-5573, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34397070

RESUMO

Two-photon carbon-based nanoprobes hold great potential for biomedical applications as a result of their advantages of low fluorescence background, deep tissue imaging penetration and enhanced spatial resolution. However, the development of an activatable two-photon fluorescence carbon-based nanoprobe that simultaneously has the ability to target desired organs or cells is highly desired but remained a largely unsolved challenge. Herein, we developed boronate affinity BCNP@MnO2 nanocomposites, constructed by one step in situ growth of MnO2 nanosheets on the surface of aminophenylboronic acid-functionalized CNPs (BCNPs) via a redox reaction, which can feature efficient fluorescence energy transfer quenching to the BCNPs, allowing for tumor-specific affinity recognition and two-photon fluorescence activation imaging. By utilizing the inherent two-photon optical properties and sialic acid (SA) specific targeting ability of the BCNPs, good biocompatibility of the nanocomposites as well as highly sensitive and selective responses of MnO2 nanosheets towards GSH, the developed nanocomposites have demonstrated specific two-photon fluorescence activation imaging in target cancer cells and nude mouse tissues. Therefore, our proposed novel strategy could be used for monitoring GSH-triggered two-photon fluorescence activation events in SA-overexpressed cancer cells and has promising applications in both biological exploration and clinical diagnosis.


Assuntos
Compostos de Manganês , Nanopartículas , Animais , Carbono , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Glutationa , Camundongos , Ácido N-Acetilneuramínico , Nanopartículas/toxicidade , Imagem Óptica , Óxidos/toxicidade
6.
Biosens Bioelectron ; 177: 112976, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33434778

RESUMO

DNA molecular probes have emerged as powerful tools for fluorescence imaging of microRNAs (miRNAs) in living cells and thus elucidating functions and dynamics of miRNAs. In particular, the highly integrated DNA probes that can be able to address the robustness, sensitivity and consistency issues in a single assay system were highly desired but remained largely unsolved challenge. Herein, we reported for the first time that the development of the novel DNA nanomachines that split-DNAzyme motif was highly integrated in a single DNA triangular prism (DTP) reactor and can undergo target-activated DNAzyme catalytic cascade circuits, allowing amplified sensing and imaging of tumor-related microRNA-21 (miR-21) in living cells. The DNA nanomachines have shown dynamic responses for target miR-21 with excellent sensitivity and selectivity and demonstrated the potential for living cell imaging of miR-21. With the advantages of facile modular design and assembly, high biostability, low cytotoxicity and excellent cellular internalization, the highly integrated DNA nanomachines enabled accurate and effective monitoring of miR-21 expression levels in living cells. Therefore, our developed strategy may afford a reliable and robust nanoplatform for tumor diagnosis and for related biological research.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , Sondas de DNA , MicroRNAs/genética
7.
Anal Chem ; 92(24): 15953-15958, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33275414

RESUMO

DNA molecular probes have emerged as a powerful tool for RNA imaging. Hurdles in cell-specific delivery and other issues such as insufficient stability, limited sensitivity, or slow reaction kinetics, however, hinder the further application of DNA molecular probes in vivo. Herein, we report an aptamer-tethered DNA polymer for cell-specific transportation and amplified imaging of RNA in vivo via a DNA cascade reaction. DNA polymers are constructed through an initiator-triggered hybridization chain reaction using two functional DNA monomers. The prepared DNA polymers show low cytotoxicity and good stability against nuclease degradation and enable cell-specific transportation of DNA circuits via aptamer-receptor binding. Moreover, assembling the reactants of hairpins C1 and C2 on the DNA polymers accelerates the response kinetics and improves the sensitivity of the cascade reaction. We also show that the DNA polymers enable efficient imaging of microRNA-21 in live cells and in vivo via intravenous injection. The DNA polymers provide a valuable platform for targeted and amplified RNA imaging in vivo, which holds great implications for early clinical diagnosis and therapy.


Assuntos
Sondas de DNA/metabolismo , MicroRNAs/metabolismo , Imagem Molecular/métodos , Aptâmeros de Nucleotídeos/metabolismo , Linhagem Celular , Sobrevivência Celular , Sondas de DNA/química , Humanos
8.
Nanoscale ; 12(16): 8727-8731, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32296802

RESUMO

A multifunctional theranostic nanoplatform, which integrates diagnostic and therapeutic functions in a single nanosystem, holds great promise for guiding disease treatment and improving the corresponding therapy efficacy. We report the development of a novel g-C3N4 nanosheet-based theranostic nanoassembly for both enhanced imaging of cancer-relevant mRNA in living cells and imaging-guided on-demand photodynamic therapy (PDT) for tumors. The nanoassembly was constructed by using highly fluorescent and water-dispersible g-C3N4 nanosheets which act as nanocarriers, enabling efficient and self-tracking transfection of the DNA hairpin probes. The presence of intracellular mRNA will initiate the DNA hairpin probes, ultimately resulting in an amplified fluorescence signal via hybridization and displacement with mRNA. Moreover, enhanced fluorescence imaging-guided precise PDT for tumors in living cells was also demonstrated, allowing the selective ablation of tumors without any obvious side effects. Therefore, the developed theranostic approach can provide a promising platform for low-abundance biomarker discovery and early treatment of related diseases.


Assuntos
Imagem Molecular/métodos , Fotoquimioterapia/métodos , RNA Mensageiro/metabolismo , RNA Neoplásico/metabolismo , Biomarcadores Tumorais/química , Biomarcadores Tumorais/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sondas de DNA/química , Sondas de DNA/uso terapêutico , Fluorescência , Grafite/química , Grafite/uso terapêutico , Células HeLa , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Compostos de Nitrogênio/química , Compostos de Nitrogênio/uso terapêutico , Hibridização de Ácido Nucleico , RNA Mensageiro/química , RNA Neoplásico/química , Nanomedicina Teranóstica
9.
Chem Sci ; 11(38): 10361-10366, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34123179

RESUMO

DNA nanowalkers moving progressively along a prescribed DNA track are useful tools in biosensing, molecular theranostics and biosynthesis. However, stochastic DNA nanowalkers that can perform in living cells have been largely unexplored. We report the development of a novel stochastic bipedal DNA walker that, for the first time, realizes direct intracellular base excision repair (BER) fluorescence activation imaging. In our design, the bipedal walker DNA was generated by BER-related human apurinic/apyrimidinic endonuclease 1 (APE1)-mediated cleavage of DNA sequences at an abasic site in the intracellular environment, and it autonomously travelled on spherical nucleic acid (SNA) surfaces via catalyzed hairpin assembly (CHA). Our nanomachine outperforms the conventional single leg-based DNA walker with an improved sensitivity, kinetics and walking steps. Moreover, in contrast to the single leg-based DNA walker, the bipedal DNA walker is capable of monitoring the fluorescence signal of reduced APE1 activity, thus indicating amplified intracellular imaging. This bipedal DNA-propelled DNA walker presents a simple and modular amplification mechanism for intracellular biomarkers of interest, providing an invaluable platform for low-abundance biomarker discovery leading to the accurate identification and effective treatment of cancers.

10.
Talanta ; 206: 120175, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514861

RESUMO

Detecting the interactions between small molecules and proteins was critical for disease theranostics and drug development. Here we propose a novel universal assay strategy for monitoring small molecule-protein interactions in solution using strand displacement amplification (SDA) mediated by protein binding to small molecule with DNAzyme-based chemiluminescence detection. The DNA polymerase and nicking enzyme assisted SDA could yield a great amount of peroxidase-mimicking DNAzyme sequences which cause significantly chemiluminescence signals, while protein binding to the small molecule label would prevent DNA polymerase from extending nick site and DNAzyme sequence, and thus the chemiluminescence signals would obviously decrease. This strategy was demonstrated using folate and its binding protein (folate receptor), and the results revealed that the developed strategy enable offer a label-free, homogeneous, and highly sensitive chemiluminescence detection of folate receptor with a detection limit of 1pM. At the same time, it has been successfully used for folate receptor detection in human serum. The proposed chemiluminescence sensing method might provide a generic, robust, and high-throughput platform for detecting various small molecule-protein interactions for biological applications.


Assuntos
DNA Catalítico/química , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/metabolismo , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Desoxirribonuclease I/química , Receptores de Folato com Âncoras de GPI/sangue , Hemina/química , Humanos , Limite de Detecção , Medições Luminescentes/métodos , Luminol/química , Estudo de Prova de Conceito
12.
Chem Commun (Camb) ; 55(30): 4387-4390, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30916085

RESUMO

A novel and versatile platform for single-step amplified fluorescence detection of antibodies via specific proximity-induced hybridization chain assembly is developed.


Assuntos
Anticorpos/sangue , Técnicas Biossensoriais/métodos , DNA/química , DNA/genética , Técnicas de Amplificação de Ácido Nucleico , Anticorpos/metabolismo , DNA/metabolismo , Humanos , Limite de Detecção , Espectrometria de Fluorescência
13.
Anal Chem ; 91(4): 2610-2614, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30701962

RESUMO

DNA hydrogels are biocompatible and are suitable for many biomedical applications. However, to be useful imaging probes or drug carriers, the ordinary bulk size of DNA hydrogels must be overcome. Here we put forward a new strategy for fabricating a novel and simple protein-scaffolded DNA nanohydrogel, constructed through a direct DNA self-assembly using three types of streptavidin (SA)-based DNA tetrad for the activation of imaging and targeting therapy of cancer cells. The DNA nanohydrogels are easily prepared, and we show that by varying the initial concentration of DNA tetrad, it is possible to finely control their size within nanoscale range, which are favorable as carriers for intracellular imaging and transport. By further incorporating therapeutic agents and tumor-targeting MUC1 aptamer, these multifunctionalized SA-scaffolded DNA nanohydrogels (SDH) can specifically target cancer cells and selectively release the preloaded therapeutic agents via a structure switching when in an ATP-rich intracellular environment, leading to the activation of the fluorescence and efficient treatment of cancer cells. With the advantages of facile modular design and assembly, effective cellular uptake, and excellent biocompatibility, the method reported here has the potential for the development of new tunable DNA nanohydrogels with multiple synergistic functionalities for biological and biomedical applications.


Assuntos
Antineoplásicos/farmacologia , DNA/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Hidrogéis/química , Nanoestruturas/química , Aptâmeros de Nucleotídeos/química , Carbocianinas/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/química , Humanos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Estreptavidina/química
14.
ACS Sens ; 3(12): 2526-2531, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30468073

RESUMO

We develop a novel amplified split aptamer sensor for highly sensitive detection and imaging of small molecules in living cells by using cationic block copolymer nanoparticles (BCNs) with entrapped fluorescent conjugated polymer as a delivery agent. The design of a split aptamer as the initiator of hybridization chain reaction (HCR) affords the possibility of enhancing the signal-to-background ratio and thus allows high-contrast imaging for small molecules with relatively weak interactions with their aptamers. The novel design of using fluorescent cationic BCNs as the nanocarrier enables efficient and self-tracking transfection of DNA probes. Results reveal that BCNs exhibit high fluorescence brightness allowing direct tracking of the delivery location. The developed amplified split aptamer sensor is shown to have high sensitivity and selectivity for in vitro quantitative detection of adenosine triphosphate (ATP) with a detection limit of 30 nM. Live cell studies show that the sensor provides a "signal on" approach for specific, high-contrast imaging of ATP. The DNA sensor based HCR system may provide a new generally applicable platform for detection and imaging of low-abundance biomarkers.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Nanopartículas/química , Polietilenoglicóis/química , Polivinil/química , Trifosfato de Adenosina/análise , Aptâmeros de Nucleotídeos/genética , Biomarcadores/análise , DNA/química , DNA/genética , Sondas de DNA/química , Sondas de DNA/genética , Fluorenos/química , Fluorenos/toxicidade , Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Células HeLa , Humanos , Sequências Repetidas Invertidas , Limite de Detecção , Microscopia de Fluorescência/métodos , Nanopartículas/toxicidade , Hibridização de Ácido Nucleico , Polietilenoglicóis/toxicidade , Polivinil/toxicidade
15.
Anal Chem ; 90(22): 13188-13192, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30380845

RESUMO

The efficient detection and in situ monitoring of telomerase activity is of great importance for cancer diagnosis and biomedical research. Here we report for the first time that the development of a novel multivalent self-assembled DNA polymer, constructed through telomerase primer sequence (ITS) triggered hybridization chain assembly using two functional hairpin probes (tumor-trageting aptamer modified H1 and signal probe modified H2), for sensitive detection and imaging of telomerase activity in living cells. After internalizing into the tumor cells by multivalent aptamer targeting, the ITS on DNA polymers can be elongated by intracellular telomerase to generate telomere repeat sequences that are complementary with the signal probe, which can proceed along the DNA polymers, and gradually light up the whole DNA polymers, leading to an enhanced fluorescence signal directly correlated with the activity of telomerase. Our results demonstrated that the developed DNA polymer show excellent performance for specifically detecting telomerase activity in cancer cells, dynamically monitoring the activity change of telomerase in response to telomerase-based drugs, and efficiently distinguishing cancer cells from normal cells. The proposed strategy may afford a valuable tool for the monitoring of telomerase activity in living cells and have great implications for biological and diagnostic applications.


Assuntos
Aptâmeros de Nucleotídeos/química , DNA/química , Polímeros/química , Telomerase/análise , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/toxicidade , Carbocianinas/química , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , DNA/toxicidade , Ensaios Enzimáticos/métodos , Fluorescência , Corantes Fluorescentes/química , Humanos , Limite de Detecção , Hibridização de Ácido Nucleico , Fosfoproteínas/metabolismo , Polímeros/metabolismo , Polímeros/toxicidade , Proteínas de Ligação a RNA/metabolismo , Nucleolina
16.
Anal Chem ; 90(21): 12951-12958, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30303006

RESUMO

Spherical nucleic acid (SNA) constructs are promising new single entity materials, which possess significant advantages in biological applications. Current SNA-based drug delivery system typically employed single-layered ss- or ds-DNA as the drug carriers, resulting in limited drug payload capacity and disease treatment. To advance corresponding applications, we developed a novel DNA-programmed polymeric SNA, a long concatamer DNA polymer that is uniformly distributed on gold nanoparticles (AuNPs), by self-assembling from two short alternating DNA building blocks upon initiation of immobilized capture probes on AuNPs, through a supersandwich hybridization reaction. The long DNA concatamer of polymeric SNA enables to allow high-capacity loading of bioimaging and therapeutics agents. We demonstrated that both of the fluorescence signals and therapeutic efficacy were effectively inhibited in resultant polymeric SNA. By further modifying with the nucleolin-targeting aptamer AS1411, this polymeric SNA could be specifically internalized into the tumor cells through nucleolin-mediated endocytosis and then interact with endogenous ATP to cause the release of therapeutics agents from long DNA concatamer via a structure switching, leading to the activation of the fluorescence and selective synergistic chemotherapy and photodynamic therapy. This nanostructure can afford a promising targeted drug transport platform for activatable cancer theranostics.


Assuntos
Antineoplásicos/farmacologia , DNA/química , Portadores de Fármacos/química , Nanopartículas Metálicas/química , Nanomedicina Teranóstica/métodos , Neoplasias do Colo do Útero/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Antineoplásicos/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Clorofilídeos , DNA/genética , DNA/metabolismo , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Feminino , Fluorescência , Ouro/química , Células HeLa , Humanos , Luz , Microscopia Confocal/métodos , Hibridização de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/efeitos da radiação , Porfirinas/química , Porfirinas/farmacologia , Porfirinas/efeitos da radiação , Oxigênio Singlete/metabolismo
17.
Anal Chem ; 90(19): 11198-11202, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30189727

RESUMO

DNA nanodevices that mimic natural biomolecular machines changing configurations in response to external inputs have enabled smart sensors to live cell imaging. We report for the first time the development of a dynamic DNA nanomachine that is anchored on a cell's surface and undergoes pH-responsive triplex-duplex conformation switching, allowing tunable sensing and imaging of extracellular pH. Results reveal that the DNA nanomachine can be stably anchored on the cell surface via multiple anchors, and the adjustment of C+G-C content in the switch element confers tunability of pH response windows. The anchored DNA nanomachine also demonstrates desirable sensitivity, excellent reversibility, and quantitative ability for extracellular pH detection and imaging. This cell surface-anchored pH-responsive DNA nanomachine can provide a useful platform for pH sensing in extracellular microenvironments and diagnostics of different pH-related diseases.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Espaço Extracelular/química , Imagem Molecular/métodos , Nanotecnologia/métodos , Linhagem Celular , Concentração de Íons de Hidrogênio , Conformação de Ácido Nucleico , Propriedades de Superfície
18.
Analyst ; 143(18): 4422-4428, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30140810

RESUMO

In this work, a versatile point-of-care assay platform based on a microfluidic paper-based analytic device (µPAD) was developed for the simultaneous detection of multiple targets. The µPAD with a central zone and six test zones is fabricated by a simple and inexpensive wax printing method. A flower-like hybrid nanocomplex synthesized with specific dual enzymes and Cu3(PO4)2 inorganic nanocrystals is spotted in the test zones on the µPAD, followed by the introduction of assay targets. Using dual-enzyme inorganic hybrid nanoflowers in the µPAD as nanobiocatalysts, which preserve the activity and enhance the stability of the enzymes, based on the H2O2-mediated catalytic oxidizing chromogenic reaction produced by glucose/uric acid, the developed multiplex paper-based nanobiocatalytic system is demonstrated to enable simultaneous and sensitive detection of glucose and uric acid with a detection limit of 60 and 25 µM, respectively. More importantly, it has been successfully used for detecting glucose and uric acid levels in human whole blood samples. The developed multiplex paper-based nanobiocatalytic system features very easy fabrication and operation, low cost, and high sensitivity and has promising prospects for a clinical multianalyte point-of-care test.


Assuntos
Glicemia/análise , Nanopartículas , Papel , Ácido Úrico/sangue , Enzimas/química , Humanos , Peróxido de Hidrogênio , Técnicas Analíticas Microfluídicas , Testes Imediatos
20.
Anal Chem ; 90(7): 4649-4656, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29542914

RESUMO

Unique physicochemical characteristics of graphitic carbon nitride (g-CN) nanosheets suit them to be a useful tool for two-photon fluorescence bioimaging. Current g-CN nanosheets based imaging probes typically use the "always-on" design strategies, which may suffer from increased fluorescence background and limited contrast. To advance corresponding applications, g-CN nanosheets based activatable two-photon fluorescence probes remain to be explored. For the first time, we developed an activatable two-photon fluorescence probe, constructed from a nanoassembly of g-CN nanosheets and hyaluronic acid (HA)-gold nanoparticles (HA-AuNPs), for detection and imaging of hyaluronidase (HAase) in cancer cells. The deliberately introduced HA in our design not only functions as the buffering layer for stabilizing AuNPs and inducing corresponding self-assembly on g-CN nanosheets but also as a pilot for targeting HA receptors overexpressed on cancer cell surfaces. Our results show that the developed nanoassembly enables specific detection and activatable imaging of HAase in cancer cells and deep tissues, with superb signal-to-background ratio and high sensitivity. This nanoassembly can afford a promising platform for highly specific and sensitive imaging of HAase and for related cancer diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...