Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anticancer Res ; 44(3): 1173-1182, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423664

RESUMO

BACKGROUND/AIM: Oral squamous cell carcinoma (OSCC), a major malignancy in Taiwan, is an invasive epithelial neoplasm resulting in a low survival rate. Current treatments do not prevent OSCC progression, and antitumor therapies should be improved. Plumbagin, a natural compound extracted from Plumbago zeylanica L., appears to have antitumor effects in various tumors. The antitumor mechanism of plumbagin in OSCC is still unclear. This study investigated the molecular mechanism through which plumbagin induces apoptosis. MATERIALS AND METHODS: To investigate the antiproliferative and pro-apoptotic effects of Plumbagin on OSCC cells and explore its underlying mechanism, cell counting kit-8, cell cycle analysis, and annexin V/PI assay were conducted. The functions of plumbagin on endoplasmic reticulum (ER) stress, reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP) deficiency were analyzed using flow cytometric analysis. Plumbagin-induced apoptosis-associated proteins were detected using western blotting. RESULTS: Plumbagin induced apoptosis in OSCC cells by suppressing tumor cell proliferation through ROS production, ER stress, mitochondrial dysfunction, and caspases activation. CONCLUSION: Plumbagin is a promising antitumor candidate targeting human OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Naftoquinonas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linhagem Celular Tumoral , Apoptose , Proliferação de Células , Estresse do Retículo Endoplasmático
2.
Int J Biol Sci ; 20(3): 1093-1109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322119

RESUMO

Background: As lung cancer is the leading cause of cancer death worldwide, the development of new medicines is a crucial endeavor. Naringenin, a flavanone derivative, possesses anti-cancer and anti-inflammatory properties and has been reported to have cytotoxic effects on various cancer cells. The current study investigated the underlying molecular mechanism by which naringenin induces cell death in lung cancer. Methods: The expression of apoptosis, cell cycle arrest, and autophagy markers in H1299 and A459 lung cancer cells was evaluated using a terminal deoxynucleotidyl transferase dUTP nick end labeling assay (TUNEL), Western blot, Annexin V/PI stain, PI stain, acridine orange staining, and transmission electron microscopy (TEM). Using fluorescence microscopy, DALGreen was used to observe the degradation of p62, a GFP-LC3 plasmid was used to evaluate puncta formation, and a pcDNA3-GFP-LC3-RFP-LC3ΔG plasmid was used to evaluate autophagy flux. Furthermore, the anti-cancer effect of naringenin was evaluated in a subcutaneous H1299 cell xenograft model. Results: Naringenin treatment of lung cancer cells (H1299 and A459) reduced cell viability and induced cell cycle arrest. Pretreatment of cells with ROS scavengers (N-acetylcysteine or catalase) suppressed the naringenin-induced cleavage of apoptotic protein and restored cyclin-dependent kinase activity. Naringenin also triggered autophagy by mediating ROS generation, thereby activating AMP-activated protein kinase (AMPK) signaling. ROS inhibition not only inhibited naringenin-induced autophagic puncta formation but also decreased the ratio of microtubule-associated proteins 1A/1B light chain 3 II (LC3II)/LC3I and activity of the AMPK signaling pathway. Furthermore, naringenin suppressed tumor growth and promoted apoptosis in the xenograft mouse model. Conclusion: This study demonstrated the potent anti-cancer effects of naringenin on lung cancer cells, thereby providing valuable insights for developing small-molecule drugs that can induce cell cycle arrest, apoptosis, and autophagic cell death.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Flavanonas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Apoptose , Neoplasias Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Autofagia , Flavanonas/farmacologia
3.
J Infect Dis ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409272

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) sequence type (ST) 45 is a globally disseminated MRSA lineage. Herein, we investigated whether MRSA ST45 isolates from cellulitis and from osteomyelitis display distinctive phenotypic and genomic characteristics. METHODS: A total of 15 MRSA ST45 isolates from cellulitis (CL-MRSAs; n = 6) or osteomyelitis (OM-MRSAs; n = 9) were collected in a Taiwan hospital. These MRSA ST45 isolates were characterized for their antimicrobial susceptibility, biofilm-forming ability, cellular infectivity in vitro, and pathogenicity in vivo. Four CL-MRSA and six OM-MRSA ST45 isolates were selected for whole-genome sequencing (WGS). RESULTS: Antibiotic resistance tests showed that all OM-MRSA ST45 strains, but not CL-MRSA ST45 strains, were resistant to ciprofloxacin, levofloxacin, gentamicin and doxycycline. Compared to the CL-MRSA ST45 isolates, the OM-MRSA ST45 isolates had stronger biofilm-forming ability and cellular infectivity, and caused more severe disease in mice. WGS analysis revealed that these OM-MRSA ST45 isolates carry multiple common mutations or polymorphisms in genes associated with antibiotic resistance and virulence. Moreover, the transposable elements IS256 and IS257R2 were found only in the OM-MRSA ST45 isolates. CONCLUSIONS: The emergence and spread of the highly pathogenic and multidrug-resistant ST45 MRSAs identified from osteomyelitis may pose a serious threat on public health.

4.
Aging (Albany NY) ; 15(24): 14900-14914, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38126996

RESUMO

Despite advances in therapeutic strategies, lung cancer remains the leading cause of cancer-related death worldwide. Acetylshikonin is a derivative of the traditional Chinese medicine Zicao and presents a variety of anticancer properties. However, the effects of acetylshikonin on lung cancer have not been fully understood yet. This study explored the mechanisms underlying acetylshikonin-induced cell death in non-small cell lung cancer (NSCLC). Treating NSCLC cells with acetylshikonin significantly reduced cell viability, as evidenced by chromatin condensation and the appearance of cell debris. Acetylshikonin has also been shown to increase cell membrane permeability and induce cell swelling, leading to an increase in the population of necrotic cells. When investigating the mechanisms underlying acetylshikonin-induced cell death, we discovered that acetylshikonin promoted oxidative stress, decreased mitochondrial membrane potential, and promoted G2/M phase arrest in lung cancer cells. The damage to NSCLC cells induced by acetylshikonin resembled results involving alterations in the cell membrane and mitochondrial morphology. Our analysis of oxidative stress revealed that acetylshikonin induced lipid oxidation and down-regulated the expression of glutathione peroxidase 4 (GPX4), which has been associated with necroptosis. We also determined that acetylshikonin induces the phosphorylation of receptor-interacting serine/threonine-protein kinase 1 (RIPK1)/RIPK3 and mixed lineage kinase domain-like kinase (MLKL). Treatment with RIPK1 inhibitors (necrostatin-1 or 7-Cl-O-Nec-1) significantly reversed acetylshikonin-induced MLKL phosphorylation and NSCLC cell death. These results indicate that acetylshikonin activated the RIPK1/RIPK3/MLKL cascade, leading to necroptosis in NSCLC cells. Our findings indicate that acetylshikonin reduces lung cancer cells by promoting G2/M phase arrest and necroptosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Proteínas Quinases/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Necroptose , Apoptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
5.
Biochem Pharmacol ; 218: 115853, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37832794

RESUMO

Osteosarcoma is a malignant tumor with high metastatic potential, such that the overall 5-year survival rate of patients with metastatic osteosarcoma is only 20%. Therefore, it is necessary to unravel the mechanisms of osteosarcoma metastasis to identify predictors of metastasis by which to develop new therapies. Fibroblast growth factor 2 (FGF2) is a growth factor involved in embryonic development, cell migration, and proliferation. The overexpression of FGF2 and FGF receptors (FGFRs) has been shown to enhance cancer cell proliferation in lung, breast, gastric, and prostate cancers as well as melanoma. Nonetheless, the roles of FGF2 and FGFRs in human osteosarcoma cells remain unknown. In the present study, we found that FGF2 was overexpressed in human osteosarcoma sections and correlated with lung metastasis. Treatment of FGF2 induced migration activity, invasion activity, and intercellular adhesion molecule (ICAM)-1 expression in osteosarcoma cells. In particular, the downregulation or antagonism of FGFR1-4 suppressed FGF2-induced ICAM-1 expression and cancer cell migration. Furthermore, FGFR1, FGFR2, FGFR3, and FGFR4 were involved in FGF2-induced the phospholipase Cß/protein kinase Cα/proto-oncogene c-Src signaling pathway and triggered c-Jun nuclear translocation. Subsequent c-Jun upregulation of activator protein-1 transcription activity on the ICAM-1 promoter led to an increased migration of osteosarcoma cells. Moreover, the knockdown of endogenous FGF2 suppressed ICAM-1 expression and migration of osteosarcoma cells. These findings suggest that FGF2/FGFR1-4 signaling promotes metastasis via its direct downstream target gene ICAM-1, revealing a novel potential therapeutic target for osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Masculino , Neoplasias Ósseas/genética , Fator 2 de Crescimento de Fibroblastos/genética , Molécula 1 de Adesão Intercelular , Osteossarcoma/genética , Osteossarcoma/patologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais
6.
Int Immunopharmacol ; 124(Pt B): 110909, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722260

RESUMO

Rheumatoid arthritis (RA) is the most common autoimmune disease, affecting the joints of the hands and feet. Several chemokines and their receptors are crucial in RA pathogenesis through immune cell recruitment. C-X-C Motif Chemokine Ligand 1 (CXCL1), a chemokine for the recruitment of various immune cells, can be upregulated in patients with RA. However, the discussion on the role of CXCL1 in RA pathogenesis is insufficient. Here, we found that CXCL1 promoted cyclooxygenase-2 (COX-II) expression in a dose- and time-dependent manner in rheumatoid arthritis synovial fibroblasts (RASFs). CXCL1 overexpression in RASFs led to a significant increase in COX-II expression, while the transfection of RASFs with the shRNA plasmid resulted in a noticeable decrease in COX-II expression. Next, we delineated the molecular mechanism underlying CXCL1-promoted COX-II expression and noted that CXC chemokine receptor 2 (CXCR2), phospholipase C (PLC), and protein kinase C (PKC) signal transduction were responsible for COX-II expression after CXCL1 incubation for RASFs. Finally, we confirmed the transcriptional activation of nuclear factor κB (NF-κB) in RASFs after incubation with CXCL1. In conclusion, the current study provided a novel insight into the role of CXCL1 in RA pathogenesis.


Assuntos
Artrite Reumatoide , NF-kappa B , Humanos , NF-kappa B/metabolismo , Receptores de Interleucina-8B/metabolismo , Membrana Sinovial/patologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Fosfolipases Tipo C/metabolismo , Transdução de Sinais , Quimiocinas/metabolismo , Fibroblastos/metabolismo , Células Cultivadas , Quimiocina CXCL1/metabolismo
7.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373510

RESUMO

The diagnosis of liquid and solid biopsies by different instruments makes the clinic loading difficult in many aspects. Given the compositions of magnetic particles (MPs) with diverse characterizations and the innovative acoustic type of vibration sample magnetometer (VSM), the versatile, accessible magnetic diagnosis platform was proposed to meet clinical demands, such as low loading for multiple biopsies. In liquid biopsies of alpha-fetoprotein (AFP) standard solutions and subject serums, molecular concentration was analyzed from saturation magnetization by the soft type of Fe3O4 MPs with AFP bioprobe coating. In the phantom mixture simulated as bounded MPs in tissue, the bounded MPs was evaluated from the area of the hysteresis loop by hard type of cobalt MPs without bio-probes coating. Not only a calibration curve was founded for many hepatic cell carcinoma stages, but also microscale images verified the Ms increase due to magnetic protein clusters, etc. Hence, its wide populations in clinics could be expected.


Assuntos
Neoplasias Hepáticas , alfa-Fetoproteínas , Humanos , Magnetismo , Neoplasias Hepáticas/diagnóstico , Fenômenos Magnéticos , Biópsia
8.
Int J Biol Sci ; 19(5): 1455-1470, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056937

RESUMO

Background: Lung cancer is a malignant tumor with metastatic potential. Chemokine ligand 14 (CXCL14) has been reported to be associated with different cancer cell migration and invasion. However, few studies have explored the function of CXCL14 and its specific receptor in lung cancer metastasis. This study aims to determine the mechanism of CXCL14-promoted cancer metastasis. Methods: The expression of CXCL14, atypical chemokine receptor 2 (ACKR2), and epithelial mesenchymal transition (EMT) markers was evaluated by the public database of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), Western blot, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qPCR), immunohistochemistry (IHC), and immunofluorescence (IF). Migration and wound healing assays were used to observe the motility of cancer cells. A luciferase reporter assay was performed to analyze transcription factor activity. The metastasis of lung cancer cells was evaluated in an orthotopic model. Results: We have presented that overexpression of CXCL14 and ACKR2 was observed in lung cancer datasets, human lung tumor sections, and lung cancer cells. Furthermore, the migration of CXCL14-promoted lung cancer cells was determined in vitro and in vivo. In particular, ACKR2 knockdown abolished CXCL14-induced cancer cell motility. Additionally, ACKR2 was involved in CXCL14-triggered phospholipase Cß3 (PLCß3), protein kinase Cα (PKCα), and proto-oncogene c-Src signaling pathway and subsequently upregulated nuclear factor κB (NF-κB) transcription activity leading to EMT and migration of lung cancer cells. These results indicated that the CXCL14/ACKR2 axis played an important role in lung cancer metastasis. Conclusion: This study is the first to reveal the function of CXCL14 in promoting EMT and metastasis in lung cancer. As a specific receptor for CXCL14 in lung cancer, ACKR2 mediates CXCL14-induced signaling that leads to cell motility. Our findings can be used as a prognostic biomarker of lung cancer metastasis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Transdução de Sinais/genética , Receptores de Quimiocinas , Quimiocinas CXC/genética
9.
J Pineal Res ; 75(1): e12872, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37057370

RESUMO

Chondrosarcoma has a high propensity to metastasize and responds poorly to chemotherapy and radiation treatment. The enzymatic activity of matrix metalloproteinases (MMPs) is very important in chondrosarcoma metastasis. Melatonin exhibits anticarcinogenic activity in many types of cancers by suppressing the expression of certain MMP family members, but this has not yet been clearly determined in chondrosarcoma. Our study demonstrates that MMP7 plays an essential role in chondrosarcoma cell proliferation, migration, and anoikis resistance. We also found that MMP7 is highly expressed in chondrosarcomas. Our in vitro and in vivo investigations show that melatonin strongly inhibits chondrosarcoma cell proliferation, migration, and anoikis resistance by directly suppressing MMP7 expression. Melatonin reduced MMP7 synthesis by promoting levels of miR-520f-3p expression, which were downregulated in human chondrosarcoma tissue samples. Pharmacological inhibition of miR-520f-3p markedly reversed the effects of melatonin upon chondrosarcoma proliferation and metastasis. Thus, our study suggests that melatonin has therapeutic potential for reducing the tumorigenesis and metastatic potential of chondrosarcoma via the miR-520f-3p/MMP7 axis.


Assuntos
Condrossarcoma , Melatonina , MicroRNAs , Humanos , MicroRNAs/genética , Linhagem Celular Tumoral , Melatonina/farmacologia , Metaloproteinase 7 da Matriz/metabolismo , Proliferação de Células , Condrossarcoma/tratamento farmacológico , Condrossarcoma/genética , Condrossarcoma/metabolismo , Movimento Celular , Regulação Neoplásica da Expressão Gênica
10.
J Cell Mol Med ; 27(11): 1509-1522, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37082943

RESUMO

Human oral squamous cell carcinoma (OSCC) has been associated with a relatively low survival rate over the years and is characterized by a poor prognosis. C-X3-C motif chemokine ligand 1 (CX3CL1) has been involved in advanced migratory cells. Overexpressed CX3CL1 promotes several cellular responses related to cancer metastasis, including cell movement, migration and invasion in tumour cells. However, CX3CL1 controls the migration ability, and its molecular mechanism in OSCC remains unknown. The present study confirmed that CX3CL1 increased cell movement, migration and invasion. The CX3CL1-induced cell motility is upregulated through intercellular adhesion molecule-1 (ICAM-1) expression in OSCC cells. These effects were significantly suppressed when OSCC cells were pre-treated with CX3CR1 monoclonal antibody (mAb) and small-interfering RNA (siRNA). The CX3CL1-CX3CR1 axis activates promoted PLCß/PKCα/c-Src phosphorylation. Furthermore, CX3CL1 enhanced activator protein-1 (AP-1) activity. The CX3CR1 mAb and PLCß, PKCα, c-Src inhibitors reduced CX3CL1-induced c-Jun phosphorylation, c-Jun translocation into the nucleus and c-Jun binding to the ICAM-1 promoter. The present results reveal that CX3CL1 induces the migration of OSCC cells by promoting ICAM-1 expression through the CX3CR1 and the PLCß/PKCα/c-Src signal pathway, suggesting that CX3CL1-CX3CR1-mediated signalling is correlated with tumour motility and appealed to be a precursor for prognosis in human OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Proteína Quinase C-alfa , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/patologia , Movimento Celular , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Linhagem Celular Tumoral , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo
11.
Biochem Pharmacol ; 211: 115540, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37028462

RESUMO

Bone metastases during lung cancer are common. Bone sialoprotein (BSP), a non-collagenous bone matrix protein, plays important functions in bone mineralization processes and in integrin-mediated cell-matrix interactions. Importantly, BSP induces bone metastasis in lung cancer, but the underlying mechanisms remain unclear. This study therefore sought to determine the intracellular signaling pathways responsible for BSP-induced migration and invasion of lung cancer cells to bone. Analyses of the Kaplan-Meier, TCGA, GEPIA and GENT2 databases revealed that high levels of BSP expression in lung tissue samples were associated with significantly decreased overall survival (hazard ratio = 1.17; p = 0.014) and with a more advanced clinical disease stage (F-value = 2.38, p < 0.05). We also observed that BSP-induced stimulation of matrix metalloproteinase (MMP)-14 promoted lung cancer cell migration and invasion via the PI3K/AKT/AP-1 signaling pathway. Notably, BSP promoted osteoclastogenesis in RAW 264.7 cells exposed to RANKL and BSP neutralizing antibody reduced osteoclast formation in conditioned medium (CM) from lung cancer cell lines. Finally, at 8 weeks after mice were injected with A549 cells or A549 BSP shRNA cells, the findings revealed that the knockdown of BSP expression significantly reduced metastasis to bone. These findings suggest that BSP signaling promotes lung bone metastasis via its direct downstream target gene MMP14, which reveals a novel potential therapeutic target for lung cancer bone metastases.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Camundongos , Animais , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo , Metaloproteinase 14 da Matriz , Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral , Neoplasias Ósseas/metabolismo
12.
Biochem Pharmacol ; 210: 115472, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36863615

RESUMO

New therapeutic approaches are needed for metastatic osteosarcoma (OS), as survival rates remain low despite surgery and chemotherapy. Epigenetic changes, such as histone H3 methylation, play key roles in many cancers including OS, although the underlying mechanisms are not clear. In this study, human OS tissue and OS cell lines displayed lower levels of histone H3 lysine trimethylation compared with normal bone tissue and osteoblast cells. Treating OS cells with the histone lysine demethylase inhibitor 5-carboxy-8-hydroxyquinoline (IOX-1) dose-dependently increased histone H3 methylation and inhibited cellular migratory and invasive capabilities, suppressed matrix metalloproteinase expression, reversed epithelial-to-mesenchymal transition by increasing levels of epithelial markers E-cadherin and ZO-1 and decreasing the expression of mesenchymal markers N-cadherin, vimentin, and TWIST, and also reduced stemness properties. An analysis of cultivated MG63 cisplatin-resistant (MG63-CR) cells revealed lower histone H3 lysine trimethylation levels compared with levels in MG63 cells. Exposing MG63-CR cells to IOX-1 increased histone H3 trimethylation and ATP-binding cassette transporter expression, potentially sensitizing MG63-CR cells to cisplatin. In conclusion, our study suggests that histone H3 lysine trimethylation is associated with metastatic OS and that IOX-1 or other epigenetic modulators present promising strategies to inhibit metastatic OS progression.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Histonas/metabolismo , Lisina/metabolismo , Cisplatino/farmacologia , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico
13.
Aging (Albany NY) ; 15(5): 1652-1667, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36917086

RESUMO

Lung cancer is an extremely common cancer and metastatic lung cancer has a greatly low survival rate. Lymphangiogenesis is essential for the development and metastasis of lung cancer. The adipokine angiopoietin-like protein 2 (ANGPTL2) regulates tumor progression and metastasis, although the functions of ANGPTL2 in lung cancer are unknown. Analysis of data from TCGA genomics program, the GEPIA web server and the Oncomine database revealed that higher levels of ANGPTL2 expression were correlated with progressive disease and lymph node metastasis. ANGPTL2 enhanced VEGF-A-dependent lymphatic endothelial cell (LEC) tube formation and migration. Integrin α5ß1, p38 and nuclear factor (NF)-κB signaling mediated ANGPTL2-regulated lymphangiogenesis. Importantly, overexpression ANGPTL2 facilitated tumor growth and lymphangiogenesis in vivo. Thus, ANGPTL2 is a promising therapeutic object for treating lung cancer.


Assuntos
Neoplasias Pulmonares , Linfangiogênese , Humanos , Proteína 2 Semelhante a Angiopoietina , Fator A de Crescimento do Endotélio Vascular , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Transdução de Sinais , NF-kappa B/metabolismo , Linhagem Celular Tumoral
14.
Oral Dis ; 29(2): 528-541, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34181793

RESUMO

OBJECTIVES: To investigate the anticancer effects and underlying mechanisms of surfactin on human oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS: The capacity of surfactin to induce apoptosis, autophagy, and cell cycle arrest of two different human OSCC cell lines was investigated by cell viability, acridine orange staining, and cell cycle regulatory protein expression, respectively. The signaling network underlying these processes were determined by the analysis of reactive oxygen species (ROS) generation, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, endoplasmic reticulum (ER) stress-related protein levels, calcium release, mitogen-activated protein kinases activation, and cell cycle regulatory protein expression through corresponding reagents and experiments under various experimental conditions using specific pharmaceutical inhibitors or small interfering RNAs. RESULTS: Surfactin was able to induce apoptosis through NADPH oxidase/ROS/ER stress/calcium-downregulated extracellular signal-regulated kinases 1/2 pathway. Surfactin could also lead to autophagy that shared the common regulatory signals with apoptosis pathway until calcium node. Cell cycle arrest at G2 /M phase caused by surfactin was demonstrated through p53 and p21 accumulation combined p34cdc2 , phosphorylated p34cdc2 , and cyclin B1 inhibition, which was regulated by NADPH oxidase-derived ROS. CONCLUSION: Surfactin could induce apoptosis, autophagy, and cell cycle arrest in ROS-dependent manner, suggesting a multifaced anticancer agent for OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Espécies Reativas de Oxigênio/metabolismo , Cálcio , Pontos de Checagem da Fase G2 do Ciclo Celular , Pontos de Checagem do Ciclo Celular , Apoptose , Proteínas de Ciclo Celular , Autofagia , NADPH Oxidases/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
15.
J Adv Res ; 41: 77-87, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36328755

RESUMO

INTRODUCTION: Cigarette smoking is the main risk factor for lung cancer. MSCs in the TME promoting tumor angiogenesis, growth, and metastasis. SIBLING proteins enable cancer cells to extend, invade and metastasize. OBJECTIVES: Cigarette smoke promotes the progression and metastasis of lung cancer, although how this occurs is poorly understood. We evaluated the impact of whether cigarette smoking motivates SIBLING protein expression and is involved in MSC-mediated lung tumor metastasis. METHODS: We investigated the expression of OPN in the Gene Expression Omnibus (GEO) databases and confirmed the results by immunohistochemistry (IHC), qPCR and Western blotting (WB) of lung cancer cells and tissues. The effect of OPN on the recruitment and adhesion of mesenchymal stem cells (MSCs) to lung cancer cells and lung cancers metastasis was investigated by Transwell, adhesion assays. A series of in vitro and in vivo experiments were conducted to demonstrate the mechanisms by which OPN modulates recruitment and adhesion of MSCs to lung cancer cells and lung cancer metastasis. RESULTS: Cigarette smoke extract (CSE) and benzo[α]pyrene (B[α]P) increased levels of OPN expression and facilitated the recruitment and adhesion of MSCs to lung cancer cells via JAK2/STAT3 signaling. We also observed that OPN promotes tumor-associated MSC (TA-MSC) formation through the OPN receptor (integrins αvß1, αvß3, αvß5 or CD44), inducing lung cancer cell migration and invasion. In an orthotopic mouse model of lung cancer, increases in OPN expression promoted by cigarette smoke upregulated MSC recruitment and facilitated lung cancer metastasis. Knockdown of OPN expression inhibited cigarette smoke-induced lung cancer metastasis in vivo. CONCLUSION: Cigarette smoke increases OPN expression through the JAK2/STAT3 signaling pathway to attract MSC cell recruitment and promote lung cancer metastasis. Our findings offer important insights into how lung cancer metastasis develops in smokers.


Assuntos
Fumar Cigarros , Neoplasias Pulmonares , Células-Tronco Mesenquimais , Camundongos , Animais , Osteopontina/genética , Osteopontina/metabolismo , Osteopontina/farmacologia , Fumar Cigarros/efeitos adversos , Neoplasias Pulmonares/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Transdução de Sinais , Nicotiana/metabolismo , Processos Neoplásicos
16.
Front Oncol ; 12: 1001126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330492

RESUMO

Oral cancer, constituted up to 90% by squamous cell carcinomas, is a significant health burden globally. Grape seed proanthocyanidins (PA) have been suggested as a potential chemopreventive agent for oral cancer. However, their efficacy can be restricted due to the low bioavailability and bioaccessibility. Inspired by sandcastle worm adhesive, we adapted the concept of complex coacervation to generate a new type of drug delivery platform. Complex coacervates are a dense liquid phase formed by the associative separation of a mixture of oppositely charged polyelectrolytes, can serve as a drug delivery platform to protect labile cargo. In this study, we developed a complex coacervates-based delivery of PA. The release kinetics was measured, and anticancer effects were determined in two human tongue squamous cell carcinoma cell lines. The results showed that complex coacervate successfully formed and able to encapsulate PA. Additionally, PA were steadily released from the system in a pH-dependent manner. The drug delivery system could significantly inhibit the cell proliferation, migration, and invasion of cancer cells. Moreover, it could markedly reduce the expression of certain matrix metalloproteinases (MMP-2, 9, and 13) crucial to metastatic processes. We also found that suppression of protein kinase B (Akt) pathway might be the underlying mechanism for these anticancer activities. Taken together, complex coacervates-based delivery of PA can act as an effective anticancer approach for oral cancer therapy.

17.
Cells ; 11(20)2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36291151

RESUMO

Prostate cancer commonly affects the urinary tract of men and metastatic prostate cancer has a very low survival rate. Apelin belongs to the family of adipokines and is associated with cancer development and metastasis. However, the effects of apelin in prostate cancer metastasis is undetermined. Analysis of the database revealed a positive correlation between apelin level with the progression and metastasis of prostate cancer patients. Apelin treatment facilitates cell migration and invasion through inhibiting tissue inhibitor of metalloproteinase 2 (TIMP2) expression. The increasing miR-106a-5p synthesis via c-Src/PI3K/Akt signaling pathway is controlled in apelin-regulated TIMP2 production and cell motility. Importantly, apelin blockade inhibits prostate cancer metastasis in the orthotopic mouse model. Thus, apelin is a promising therapeutic target for curing metastatic prostate cancer.


Assuntos
Adipocinas , Apelina , MicroRNAs , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Adipocinas/genética , Adipocinas/fisiologia , Apelina/genética , Apelina/fisiologia , Linhagem Celular Tumoral , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Inibidor Tecidual de Metaloproteinase-2/genética , Movimento Celular , Metástase Neoplásica
18.
Micromachines (Basel) ; 13(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36295958

RESUMO

Ablation is a clinical cancer treatment, but some demands are still unsatisfied, such as electromagnetic interferences amongst multiple ablation needles during large tumour treatments. This work proposes a physical synthesis for composite particles of biocompatible iron oxide particles and liquid metal gallium (Ga) with different alternative-current (AC)-magnetic-field-induced heat mechanisms of magnetic particle hyperthermia and superior resistance heat. By some imaging, X-ray diffraction, and vibrating sample magnetometer, utilised composite particles were clearly identified as the cluster of few iron oxides using the small weight ratio of high-viscosity liquid metal Ga as conjugation materials without surfactants for physical targeting of limited fluidity. Hence, well penetration inside the tissue and the promotion rate of heat generation to fit the ablation requirement of at least 60 °C in a few seconds are achieved. For the injection and the post-injection magnetic ablations, the volume variation ratios of mice dorsal tumours on Day 12 were expressed at around one without tumour growth. Its future powerful potentiality is expected through a percutaneous injection.

19.
J Cell Physiol ; 237(12): 4551-4562, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36260652

RESUMO

Oral squamous cell carcinoma (OSCC) is an extremely common head and neck cancer with a poor 5-year survival rate, especially in cases of metastatic disease. Interleukin (IL)-11 reportedly promotes cell growth and the epithelial-mesenchymal transition process in metastasis. However, the molecular mechanisms of IL-11 in OSCC metastasis are unclear. This study found that IL-11 upregulates matrix metalloproteinase 13 (MMP-13) expression in OSCC via the IL-11 receptor alpha subunit/glycoprotein 130 receptors that activate phosphatidyl-inositol 3-kinase, Ak strain transforming, and activator protein 1 signaling, which subsequently enhance MMP-13-induced tumor metastasis. TIMER2.0 analysis revealed a positive correlation between MMP-13 and IL-11 levels (r = 0.454). Moreover, a strong positive association was observed between higher levels of IL-11 expression in OSCC tissue (p < 0.01), lymph node metastasis (p = 0.0154), and clinical disease stage (p = 0.0337). IL-11 knockdown suppressed the migration of OSCC cells (p < 0.05). The evidence indicates that IL-11 can serve as a new molecular therapeutic target in OSCC metastasis.


Assuntos
Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Receptor gp130 de Citocina , Interleucina-11 , Metaloproteinase 13 da Matriz/genética , Neoplasias Bucais/patologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Fator de Transcrição AP-1 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...