Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(7): 4109-4127, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308467

RESUMO

BACKGROUND: Yunnan hulled wheat grains (YHWs) have abundant phenolic compounds (PCs). However, a systematic elucidation of the phenolic characteristics and molecular basis in YHWs is currently lacking. The aim of the study, for the first time, was to conduct metabolomic and transcriptomic analyses of YHWs at different developmental stages. RESULTS: A total of five phenolic metabolite classes (phenolic acids, flavonoids, quinones, lignans and coumarins, and tannins) and 361 PCs were identified, with flavonoids and phenolic acids being the most abundant components. The relative abundance of the identified PCs showed a dynamic decreasing pattern with grain development, and the most significant differences in accumulation were between the enlargement and mature stage, which is consistent with the gene regulation patterns of the corresponding phenolic biosynthesis pathway. Through co-expression and co-network analysis, PAL, HCT, CCR, F3H, CHS, CHI and bZIP were identified and predicted as candidate key enzymes and transcription factors. CONCLUSION: The results broaden our understanding of PC accumulation in wheat whole grains, especially the differential transfer between immature and mature grains. The identified PCs and potential regulatory factors provide important information for future in-depth research on the biosynthesis of PCs and the improvement of wheat nutritional quality. © 2024 Society of Chemical Industry.


Assuntos
Fenóis , Triticum , Triticum/química , China , Fenóis/análise , Metaboloma , Perfilação da Expressão Gênica , Flavonoides/metabolismo , Transcriptoma , Regulação da Expressão Gênica de Plantas
2.
Plant Mol Biol ; 114(1): 10, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319430

RESUMO

Quinoa seeds are gluten- and cholesterol-free, contain all amino acids required by the human body, have a high protein content, provide endocrine regulation, protein supplementation, and cardiovascular protection effects. However, metabolite accumulation and transcriptional regulatory networks in quinoa seed development are not well understood. Four key stages of seed development in Dianli-3260 and Dianli-557 were thus analyzed and 849 metabolites were identified, among which sugars, amino acids, and lipids were key for developmental processes, and their accumulation showed a gradual decrease. Transcriptome analysis identified 40,345 genes, of which 20,917 were differential between the M and F phases, including 8279 and 12,638 up- and down-regulated genes, respectively. Grain development processes were mainly enriched in galactose metabolism, pentose and glucuronate interconversions, the biosynthesis of amino acids, and carbon metabolism pathways, in which raffinose, phosphoenolpyruvate, series and other metabolites are significantly enriched, gene-LOC110689372, Gene-LOC110710556 and gene-LOC110714584 are significantly expressed, and these metabolites and genes play an important role in carbohydrate metabolism, lipid and Amino acid synthesis of quinoa. This study provides a theoretical basis to expand our understanding of the molecular and metabolic development of quinoa grains.


Assuntos
Chenopodium quinoa , Transcriptoma , Humanos , Chenopodium quinoa/genética , Metaboloma/genética , Sementes/genética , Aminoácidos
3.
Metabolites ; 13(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37887390

RESUMO

Quinoa (Chenopodium quinoa wild.), a dicotyledonous plant native to the Andes, is an increasingly popular pseudograin owing to its high nutritional value, stress resistance capabilities, and gluten-free properties. In this study, we aimed to explore the dynamic changes in different varieties of quinoa at the seedling stage and their regulatory networks. Here, we found that the leaves of quinoa showed obvious coloration after 45 days, and four quinoa seedling types (red, white, yellow, and black) were subjected to ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and transcriptome sequencing to identify their differentially expressed genes and metabolites. A total of 29 differential metabolites and 19 genes (14 structural and 5 regulatory genes) were identified, and consistent differences were observed in the flavonoid, phenolic acid, and alkaloid metabolites in the different quinoa types. These differential metabolites were significantly enriched in flavonoid and flavonol biosynthesis, flavonoid biosynthesis, and phenylpropanoid biosynthesis pathways. In addition, real-time fluorescence quantitative PCR (RT-qPCR) technology was used to detect the expression of four structural genes involved in the flavonoid biosynthesis pathway and four regulatory genes (interaction network). The results revealed that the structural and regulatory gene transcript levels in the flavonoid pathway were higher in the red quinoa cultivars than in the white, yellow, and black. Additionally, the differences in the leaves of these four quinoa cultivars were mainly due to differences in flavonoid, phenolic acid, and alkaloid accumulation. Our findings provide a basis for understanding the accumulation and coloration mechanisms of flavonoids, phenolic acids, and alkaloids in quinoa seedlings of different colors and also provide a theoretical basis for future investigations.

4.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686281

RESUMO

Yunnan hulled wheat (YHW) possesses excellent nutritional characteristics; however, the precise amino acid (AA) composition, contents, and molecular mechanisms underlying AA biosynthesis in YHW grains remain unclear. In this study, we aimed to perform metabolomic and transcriptomic profiling to identify the composition and genetic factors regulating AA biosynthesis during the physiological maturation of grains of two YHW genotypes, Yunmai and Dikemail, with high and low grain protein contents, respectively. A total of 40 and 14 differentially accumulated amino acids (AAs) or AA derivatives were identified between the waxy grain (WG) and mature grain (MG) phenological stages of Yunmai and Dikemail, respectively. The AA composition differed between WG and MG, and the abundance of AAs-especially that of essential AAs-was significantly higher in WG than in MG (only 38.74-58.26% of WG). Transcriptome analysis revealed differential regulation of structural genes associated with the relatively higher accumulation of AAs in WG. Weighted gene co-expression network analysis and correlation analyses of WG and MG indicated differences in the expression of clusters of genes encoding both upstream elements of AA biosynthesis and enzymes that are directly involved in AA synthesis. The expression of these genes directly impacted the synthesis of various AAs. Together, these results contribute to our understanding of the mechanism of AA biosynthesis during the different developmental stages of grains and provide a foundation for further research to improve the nutritional value of wheat products.


Assuntos
Antifibrinolíticos , Triticum , Triticum/genética , China , Metaboloma , Aminoácidos , Grão Comestível , Perfilação da Expressão Gênica
5.
Biomolecules ; 13(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37759752

RESUMO

Quinoa is of great interest because it is cold- and drought-resistant; however, little research has been performed on quinoa under high relative humidity (RH) stress. In this study, quinoa seedlings of a highly HR-resistant variety ("Dianli-439") and a sensitive variety ("Dianli-969") were subjected to morphological and physiological measurements and metabolome and transcriptome analyses to investigate their response to high RH stress. In total, 1060 metabolites were detected, and lipids and flavonoids were the most abundant, with 173 and 167 metabolites, respectively. In total, 13,095 differentially expressed genes were identified, and the results showed that abscisic acid, auxin, and jasmonic-acid-related genes involved in plant hormone signaling may be involved in the response of quinoa seedlings to high RH stress. The analysis of the transcription factors revealed that the AP2/ERF family may also play an important role in the response to high RH stress. We identified the possible regulatory mechanisms of the hormone signaling pathways under high RH stress. Our findings can provide a basis for the selection and identification of highly resistant quinoa varieties and the screening of the metabolite-synthesis- and gene-regulation-related mechanisms in quinoa in response to RH stress.

6.
Pestic Biochem Physiol ; 195: 105547, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666590

RESUMO

Henosepilachna vigintioctopunctata is a notorious pest of solanaceous plants in Asia, which is mainly managed by chemical pesticides. RNA interference (RNAi) technique is considered to be a promising and effective alternative for pest control. In this study, we selected the proteasome 20S subunit alpha 2 (Prosα2) gene, a cellular protein involved in many proteins regulatory processes, to explore the RNAi efficiency in H. vigintioctopunctata. The obtained results confirmed the significant lethal effects of HvProsα2 silencing on the H. vigintioctopunctata 1st instar larvae at concentrations of 100, 50, and 5 ng/µL. Ingestion of the bacterially expressed dsHvProsα2 caused high mortality in both larvae and adults. Moreover, silencing of HvProsα2 resulted in feeding disorders, growth delay, and abnormal intestinal development of the larvae. Overall, HvProsα2 acts as an important regulator for the growth and development of H. vigintioctopunctata, and can serve as a candidate target gene for the RNAi-based control of H. vigintioctopunctata.


Assuntos
Besouros , Praguicidas , Animais , Complexo de Endopeptidases do Proteassoma , Interferência de RNA , Larva/genética
7.
Planta ; 258(3): 63, 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37543957

RESUMO

MAIN CONCLUSION: Blue light has a greater effect on jasmonic acid and flavonoid accumulation in wheat seeds than red light; blue light reduces starch synthesis and the size of starch granules and seeds. This study sought to elucidate the effects of blue and red light on seed metabolism to provide important insights regarding the role of light quality in regulating seed growth and development. We used combined multi-omics analysis to investigate the impact of red and blue light (BL) on the induction of secondary metabolite accumulation in the hexaploid wheat Dianmai 3 after pollination. Flavonoids and alkaloids were the most differentially abundant metabolites detected under different treatments. Additionally, we used multi-omics and weighted correlation network analysis to screen multiple candidate genes associated with jasmonic acid (JA) and flavonoids. Expression regulatory networks were constructed based on RNA-sequencing data and their potential binding sites. The results revealed that BL had a greater effect on JA and flavonoid accumulation in wheat seeds than red light. Furthermore, BL reduced starch synthesis and stunted the size of starch granules and seeds. Collectively, these findings clarify the role of BL in the metabolic regulation of early seed development in wheat.


Assuntos
Sementes , Triticum , Triticum/genética , Triticum/metabolismo , Flavonoides/metabolismo , Amido/metabolismo , Regulação da Expressão Gênica de Plantas
8.
BMC Genomics ; 24(1): 399, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454047

RESUMO

BACKGROUND: Quinoa is a highly nutritious and novel crop that is resistant to various abiotic stresses. However, its growth and development is restricted due to its limited utilization of soil phosphorus. Studies on the levels of phosphorus in quinoa seedlings are limited; therefore, we analyzed transcriptome data from quinoa seedlings treated with different concentrations of phosphorus. RESULTS: To identify core genes involved in responding to various phosphorus levels, the weighted gene co-expression network analysis method was applied. From the 12,085 expressed genes, an analysis of the gene co-expression network was done. dividing the expressed genes into a total of twenty-five different modules out of which two modules were strongly correlated with phosphorus levels. Subsequently we identified five core genes that correlated strongly either positively or negatively with the phosphorus levels. Gene ontology and assessments of the Kyoto Encyclopedia of Genes and Genomes have uncovered important biological processes and metabolic pathways that are involved in the phosphorus level response. CONCLUSIONS: We discovered crucial new core genes that encode proteins from various transcription factor families, such as MYB, WRKY, and ERF, which are crucial for abiotic stress resistance. This new library of candidate genes associated with the phosphorus level responses in quinoa seedlings will help in breeding varieties that are tolerant to phosphorus levels.


Assuntos
Chenopodium quinoa , Plântula , Plântula/genética , Plântula/metabolismo , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Fósforo/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
9.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511340

RESUMO

Quinoa (Chenopodium quinoa Willd.) is a dicotyledonous annual amaranth herb that belongs to the family Chenopodiaceae. Quinoa can be cultivated across a wide range of climatic conditions. With regard to its cultivation, nitrogen-based fertilizers have a demonstrable effect on the growth and development of quinoa. How crops respond to the application of nitrogen affects grain quality and yield. Therefore, to explore the regulatory mechanisms that underlie the responses of quinoa seedlings to the application of nitrogen, we selected two varieties (i.e., Dianli-1299 and Dianli-71) of quinoa seedlings and analyzed them using metabolomic and transcriptomic techniques. Specifically, we studied the mechanisms underlying the responses of quinoa seedlings to varying concentrations of nitrogen by analyzing the dynamics of metabolites and genes involved in arginine biosynthesis; carbon fixation; and alanine, aspartate, and glutamate biosynthetic pathways. Overall, we found that differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) of quinoa are affected by the concentration of nitrogen. We detected 1057 metabolites, and 29,012 genes were annotated for the KEGG. We also found that 15 DEMs and 8 DEGs were key determinants of the differences observed in quinoa seedlings under different nitrogen concentrations. These contribute toward a deeper understanding of the metabolic processes of plants under different nitrogen treatments and provide a theoretical basis for improving the nitrogen use efficiency (NUE) of quinoa.


Assuntos
Chenopodium quinoa , Transcriptoma , Chenopodium quinoa/metabolismo , Plântula/genética , Plântula/metabolismo , Fertilizantes , Nitrogênio/metabolismo , Metaboloma
10.
BMC Plant Biol ; 23(1): 292, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264351

RESUMO

BACKGROUND: Quinoa (Chenopodium quinoa Willd.) originates in high altitude areas, such as the Andes, and has some inherent characteristics of cold, drought, and salinity tolerance, but is sensitive to high temperature. RESULTS: To gain insight into the response mechanism of quinoa to high temperature stress, we conducted an extensive targeted metabolomic study of two cultivars, Dianli-3101 and Dianli-3051, along with a combined transcriptome analysis. A total of 794 metabolites and 54,200 genes were detected, in which the genes related to photosynthesis were found down-regulated at high temperatures, and two metabolites, lipids and flavonoids, showed the largest changes in differential accumulation. Further analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and transcription factors revealed that quinoa inhibits photosynthesis at high temperatures, and the possible strategies being used for high temperature stress management are regulation of heat stress transcription factors (HSFs) to obtain heat tolerance, and regulation of purine metabolism to enhance stress signals for rapid response to high temperature stress. The tolerant genotype could have an enhanced response through lower purine levels. The induction of the stress response could be mediated by HSF transcription factors. The results of this study may provide theoretical references for understanding the response mechanism of quinoa to high temperature stress, and for screening potential high temperature tolerant target genes and high temperature tolerant strains. CONCLUSIONS: These findings reveal the regulation of the transcription factor family HSF and the purinergic pathway in response to high temperature stress to improve quinoa varieties with high temperature tolerance.


Assuntos
Chenopodium quinoa , Plântula , Plântula/genética , Chenopodium quinoa/fisiologia , Temperatura , Transcriptoma , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Front Nutr ; 10: 1112497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824168

RESUMO

Colored wheat has been recognized broadly for its nutritional value because of its natural content of the colorant anthocyanin. To investigate the reasons for the formation of the wheat grain color at maturity, metabolomic and transcriptomic analyses were performed on three different grain colors of wheat. Through metabolome analysis, 628 metabolites were identified. Of the 102 flavonoids, there are 9 kinds of anthocyanins related to color formation, mainly cyanidin and peonidin, and their metabolite content was the lowest in white-grain wheat. Among the genes associated with color formation, the structural gene TraesCS2D02G392900 in F3H with the bHLH transcription factor could elucidate the origin of wheat coloration. Multi-omics analysis showed that color formation is mainly influenced by the regulation of genes affecting anthocyanin and related synthesis. The results of this study may provide a theoretical basis for grain color formation at maturity and the nutritional and product development potential of colored wheat lines.

12.
Chem Biodivers ; 20(3): e202201257, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36808231

RESUMO

A series of novel amyl ester tethered dihydroartemisinin-isatin hybrids 4a-d and 5a-h were designed, synthesized, and evaluated as anti-breast cancer agents. The synthesized hybrids were preliminarily screened against estrogen receptor-positive (MCF-7 and MCF-7/ADR) and triple-negative (MDA-MB-231 and) breast cancer cell lines. Three hybrids 4a,d and 5e not only were more potent than artemisinin and adriamycin against drug-resistant MCF-7/ADR and MDA-MB-231/ADR breast cancer cell lines, but also displayed non-cytotoxicity towards normal MCF-10 A breast cells, and the SI values were >4.15, indicating their excellent selectivity and safety profiles. Thus, hybrids 4a,d and 5e could act as potential anti-breast cancer candidates and were worthy of further preclinical evaluations. Moreover, the structure-activity relationships which may facilitate further rational design of more effective candidates were also enriched.


Assuntos
Antineoplásicos , Artemisininas , Neoplasias da Mama , Isatina , Humanos , Feminino , Isatina/farmacologia , Antineoplásicos/farmacologia , Artemisininas/farmacologia , Relação Estrutura-Atividade , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Estrutura Molecular , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
13.
Arch Pharm (Weinheim) ; 356(3): e2200479, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36372519

RESUMO

Cancer is one of the leading causes of death across the world, and the prevalence and mortality rates of cancer will continue to grow. Chemotherapeutics play a critical role in cancer therapy, but drug resistance and side effects are major hurdles to effective treatment, evoking an immediate need for the discovery of new anticancer agents. Triazines including 1,2,3-, 1,2,4-, and 1,3,5-triazine have occupied a propitious place in drug design and development due to their excellent pharmacological profiles. Mechanistically, triazine derivatives could interfere with various signaling pathways to induce cancer cell death. Hence, triazine derivatives possess potential in vitro and in vivo efficacy against diverse cancers. In particular, triazine hybrids are able to overcome drug resistance and reduce side effects. Moreover, several triazine hybrids such as brivanib (indole-containing pyrrolo[2,1-f][1,2,4]triazine), gedatolisib (1,3,5-triazine-urea hybrid), and enasidenib (1,3,5-triazine-pyridine hybrid) have already been available in the market. Accordingly, triazine hybrids are useful scaffolds for the discovery of novel anticancer chemotherapeutics. This review focuses on the anticancer activity of 1,2,3-, 1,2,4-, and 1,3,5-triazine hybrids, together with the structure-activity relationships and mechanisms of action developed from 2017 to the present. The enriched structure-activity relationships may be useful for further rational drug development of triazine hybrids as potential clinical candidates.


Assuntos
Antineoplásicos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias , Humanos , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Desenho de Fármacos , Triazinas/farmacologia , Estrutura Molecular
14.
Front Psychol ; 13: 938762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570996

RESUMO

Introduction: Taking charge behavior (TCB) of civil servants is an important part of individual innovation performance, which is not only a key step for innovation in the public but also a real need for high-quality cadres construction in the public sector in the new era. Therefore, it is necessary to carry out an in-depth discussion on civil servants' taking charge behavior. Based on the theory of planned behavior, this paper constructs the framework of"cognition-motivation-behavior" to deeply explore the relationship between public sector leaders' information-sharing behavior and subordinates' taking charge behavior, as well as the mediating and moderating effects of subordinates' public service motivation and emotional trust. Method: This study collected 200 civil servants' questionnaires by online survey, and conducted regression analysis through SPSS/AMOS/PROCESS. Result and discussion: The empirical study finds that the information-sharing behavior of leaders in the public sector can significantly affect the TCB of subordinates; the public service motivation partially mediates the relationship between them; emotional trust positively moderates the mediation effect of public service motivation in the relationship between leaders' information-sharing behavior and subordinates' TCB in the public. This study not only enriches the research on civil servants' TCB theoretically but also provides meaningful enlightenment for promoting civil servants' taking charge behavior.

15.
BMC Plant Biol ; 22(1): 604, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36539684

RESUMO

BACKGROUND: Quinoa (Chenopodium quinoa Willd.) is a herb within the Quinoa subfamily of Amaranthaceae, with remarkable environmental adaptability. Its edible young leaves and grains are rich in protein, amino acids, microorganisms, and minerals. Although assessing the effects of fertilization on quinoa yield and quality has become an intensive area of research focus, the associated underlying mechanisms remain unclear. As one of the three macro nutrients in plants, potassium has an important impact on plant growth and development. In this study, extensive metabolome and transcriptome analyses were conducted in quinoa seedlings 30 days after fertilizer application to characterize the growth response mechanism to potassium.  RESULTS: The differential metabolites and genes present in the seedlings of white and red quinoa cultivars were significantly enriched in the photosynthetic pathway. Moreover, the PsbQ enzyme on photosystem II and delta enzyme on ATP synthase were significantly down regulated in quinoa seedlings under potassium deficiency. Additionally, the differential metabolites and genes of red quinoa seedlings were significantly enriched in the arginine biosynthetic pathway. CONCLUSIONS: These findings provide a more thorough understanding of the molecular changes in quinoa seedlings that occur under deficient, relative to normal, potassium levels. Furthermore, this study provides a theoretical basis regarding the importance of potassium fertilizers, as well as their efficient utilization by growing quinoa seedlings.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/química , Plântula/genética , Transcriptoma , Potássio/metabolismo , Metaboloma
16.
Front Plant Sci ; 13: 988861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388589

RESUMO

The crop production of quinoa (Chenopodium quinoa Willd.), the only plant meeting basic human nutritional requirements, is affected by drought stress. To better understand the drought tolerance mechanism of quinoa, we screened the drought-tolerant quinoa genotype "Dianli 129" and studied the seedling leaves of the drought-tolerant quinoa genotype after drought and rewatering treatments using transcriptomics and targeted metabolomics. Drought-treatment, drought control, rewatering-treated, and rewatered control were named as DR, DC, RW, and RC, respectively. Among four comparison groups, DC vs. DR, RC vs. RW, RW vs. DR, and RC vs. DC, we identified 10,292, 2,307, 12,368, and 3 differentially expressed genes (DEGs), and 215, 192, 132, and 19 differentially expressed metabolites (DEMs), respectively. A total of 38,670 genes and 142 pathways were annotated. The results of transcriptome and metabolome association analysis showed that gene-LOC110713661 and gene-LOC110738152 may be the key genes for drought tolerance in quinoa. Some metabolites accumulated in quinoa leaves in response to drought stress, and the plants recovered after rewatering. DEGs and DEMs participate in starch and sucrose metabolism and flavonoid biosynthesis, which are vital for improving drought tolerance in quinoa. Drought tolerance of quinoa was correlated with gene expression differences, metabolite accumulation and good recovery after rewatering. These findings improve our understanding of drought and rewatering responses in quinoa and have implications for the breeding of new drought-tolerance varieties while providing a theoretical basis for drought-tolerance varieties identification.

17.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361672

RESUMO

Quinoa (Chenopodium quinoa Wild.) has attracted considerable attention owing to its unique nutritional, economic, and medicinal values. Meanwhile, quinoa germplasm resources and grain colors are rich and diverse. In this study, we analyzed the composition of primary and secondary metabolites and the content of the grains of four different high-yield quinoa cultivars (black, red, white, and yellow) harvested 42 days after flowering. The grains were subjected to ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and transcriptome sequencing to identify the differentially expressed genes and metabolites. Analysis of candidate genes regulating the metabolic differences among cultivars found that the metabolite profiles differed between white and black quinoa, and that there were also clear differences between red and yellow quinoa. It also revealed significantly altered amino acid, alkaloid, tannin, phenolic acid, and lipid profiles among the four quinoa cultivars. Six common enrichment pathways, including phenylpropane biosynthesis, amino acid biosynthesis, and ABC transporter, were common to metabolites and genes. Moreover, we identified key genes highly correlated with specific metabolites and clarified the relationship between them. Our results provide theoretical and practical references for breeding novel quinoa cultivars with superior quality, yield, and stress tolerance. Furthermore, these findings introduce an original approach of integrating genomics and transcriptomics for screening target genes that regulate the desirable traits of quinoa grain.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Transcriptoma , Cromatografia Líquida , Espectrometria de Massas em Tandem , Melhoramento Vegetal , Metaboloma , Grão Comestível/genética , Grão Comestível/metabolismo , Aminoácidos/metabolismo
18.
Metabolites ; 12(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36295789

RESUMO

Quinoa (Chenopodium quinoa Willd.) is a crop with high nutritional and health benefits. Quinoa seeds are rich in flavonoid compounds; however, the mechanisms behind quinoa flavonoid biosynthesis remain unclear. We independently selected the high-generation quinoa strain 'Dianli-3260', and used its seeds at the filling, milk ripening, wax ripening, and mature stages for extensive targeted metabolome analysis combined with joint transcriptome analysis. The results showed that the molecular mechanism of flavonoid biosynthesis in quinoa seeds was mainly concentrated in two pathways: "flavonoid biosynthesis pathway" and "flavone and flavonol biosynthesis pathway". Totally, 154 flavonoid-related metabolites, mainly flavones and flavonols, were detected in the four development stages. Moreover, 39,738 genes were annotated with KEGG functions, and most structural genes of flavonoid biosynthesis were differentially expressed during grain development. We analyzed the differential flavonoid metabolites and transcriptome changes between the four development stages of quinoa seeds and found that 11 differential flavonoid metabolites and 22 differential genes were the key factors for the difference in flavonoid biosynthesis. This study provides important information on the mechanisms underlying quinoa flavonoid biosynthesis, the screening of potential quinoa flavonoid biosynthesis regulation target genes, and the development of quinoa products.

19.
Front Plant Sci ; 13: 931145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968105

RESUMO

Quinoa has attracted considerable attention owing to its unique nutritional, economic, and medicinal values. The damage intensity of Spodoptera exigua at the seedling stage of quinoa fluctuates with the crop's biological cycle and the environmental changes throughout the growing season. In this study, we used independently selected quinoa seedling resistant and susceptible cultivars to investigate the difference between insect resistance and insect susceptibility of quinoa at the seedling stage. Samples were collected when Spodoptera exigua 45 days after planting the seedlings, and broad targeted metabolomics studies were conducted using liquid chromatography-mass spectrophotometry combined with transcriptomic co-analysis. The metabolomic and genomic analyses of the insect-resistant and insect-susceptible quinoa groups revealed a total of 159 differential metabolites and were functionally annotated to 2334 differential genes involved in 128 pathways using the Kyoto Encyclopedia of Genes and Genomes analysis. In total, 14 metabolites and 22 genes were identified as key factors for the differential accumulation of insect-resistant metabolites in quinoa seedlings. Among them, gene-LOC110694254, gene-LOC110682669, and gene-LOC110732988 were positively correlated with choline. The expression of gene-LOC110729518 and gene-LOC110723164, which were notably higher in the resistant cultivars than in the susceptible cultivars, and the accumulations of the corresponding metabolites were also significantly higher in insect-resistant cultivars. These results elucidate the regulatory mechanism between insect resistance genes and metabolite accumulation in quinoa seedlings, and can provide a basis for the breeding and identification of new insect-resistant quinoa cultivars as well as for screening potential regulatory metabolites of quinoa insect-resistant target genes.

20.
Biomolecules ; 12(7)2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35883533

RESUMO

Quinoa, a cool-weather high-altitude crop, is susceptible to low-temperature stress throughout its reproductive phase. Herein, we performed broadly targeted metabolic profiling of quinoa seedlings to explore the metabolites' dynamics in response to low-temperature stress and transcriptome analysis to determine the underlying genetic mechanisms. Two variants, namely, Dian Quinoa 2324 and Dian Quinoa 281, were exposed to temperatures of -2, 5, and 22 °C. A total of 794 metabolites were detected; 52,845 genes, including 6628 novel genes, were annotated using UPLC-MS/MS analysis and the Illumina HiSeq system. Combined with morphological indicators to resolve the mechanism underlying quinoa seedling response to low-temperature stress, the molecular mechanisms of quinoa changed considerably based on temperature exposure. Soluble sugars heavily accumulated in plants with cold damage and changes in regulatory networks under freeze damage, such as the upregulation of α-linolenic acid metabolism and a reduction in energy substrates, may explain the spatial patterns of biosynthesis and accumulation of these metabolites. Genes that are actively expressed during cold responses, as revealed by co-expression analyses, may be involved in the regulation thereof. These results provide insights into the metabolic factors in quinoa under low-temperature stress and provide a reference for the screening of quinoa varieties resistant to low temperature.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/genética , Cromatografia Líquida , Regulação da Expressão Gênica de Plantas , Plântula/genética , Espectrometria de Massas em Tandem , Temperatura , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...