Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(6): 109914, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799575

RESUMO

RNA polymerase II (Pol II) has a C-terminal domain (CTD) that is unstructured, consisting of a large number of heptad repeats, and whose precise function remains unclear. Here, we investigate how altering the CTD's length and fusing it with protein tags affects transcriptional output on a genome-wide scale in mammalian cells at single-cell resolution. While transcription generally appears to occur in burst-like fashion, where RNA is predominantly made during short bursts of activity that are interspersed with periods of transcriptional silence, the CTD's role in shaping these dynamics seems gene-dependent; global patterns of bursting appear mostly robust to CTD alterations. Introducing protein tags with defined structures to the N terminus cause transcriptome-wide effects, however. We find the type of tag to dominate characteristics of the resulting transcriptomes. This is possibly due to Pol II-interacting factors, including non-coding RNAs, whose expression correlates with the tags. Proteins involved in liquid-liquid phase separation appear prominently.

2.
J Phys Chem Lett ; 12(23): 5448-5455, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34081477

RESUMO

Reaction centers (RCs) are the pivotal component of natural photosystems, converting solar energy into the potential difference between separated electrons and holes that is used to power much of biology. RCs from anoxygenic purple photosynthetic bacteria such as Rhodobacter sphaeroides only weakly absorb much of the visible region of the solar spectrum, which limits their overall light-harvesting capacity. For in vitro applications such as biohybrid photodevices, this deficiency can be addressed by effectively coupling RCs with synthetic light-harvesting materials. Here, we studied the time scale and efficiency of Förster resonance energy transfer (FRET) in a nanoconjugate assembled from a synthetic quantum dot (QD) antenna and a tailored RC engineered to be fluorescent. Time-correlated single-photon counting spectroscopy of biohybrid conjugates enabled the direct determination of FRET from QDs to attached RCs on a time scale of 26.6 ± 0.1 ns and with a high efficiency of 0.75 ± 0.01.


Assuntos
Transferência de Energia , Transferência Ressonante de Energia de Fluorescência/métodos , Nanoconjugados/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Proteobactérias/química , Pontos Quânticos/química , Nanoconjugados/análise , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/análise , Pontos Quânticos/análise , Rhodobacter sphaeroides/química , Energia Solar
3.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33959753

RESUMO

RNA-seq, including single cell RNA-seq (scRNA-seq), is plagued by insufficient sensitivity and lack of precision. As a result, the full potential of (sc)RNA-seq is limited. Major factors in this respect are the presence of global bias in most datasets, which affects detection and quantitation of RNA in a length-dependent fashion. In particular, scRNA-seq is affected by technical noise and a high rate of dropouts, where the vast majority of original transcripts is not converted into sequencing reads. We discuss these biases origins and implications, bioinformatics approaches to correct for them, and how biases can be exploited to infer characteristics of the sample preparation process, which in turn can be used to improve library preparation.


Assuntos
Biblioteca Gênica , RNA-Seq , RNA/genética , Software , Biologia Computacional
4.
ACS Nano ; 14(4): 4536-4549, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32227861

RESUMO

Many strategies for meeting mankind's future energy demands through the exploitation of plentiful solar energy have been influenced by the efficient and sustainable processes of natural photosynthesis. A limitation affecting solar energy conversion based on photosynthetic proteins is the selective spectral coverage that is the consequence of their particular natural pigmentation. Here we demonstrate the bottom-up formation of semisynthetic, polychromatic photosystems in mixtures of the chlorophyll-based LHCII major light harvesting complex from the oxygenic green plant Arabidopsis thaliana, the bacteriochlorophyll-based photochemical reaction center (RC) from the anoxygenic purple bacterium Rhodobacter sphaeroides and synthetic quantum dots (QDs). Polyhistidine tag adaptation of LHCII and the RC enabled predictable self-assembly of LHCII/RC/QD nanoconjugates, the thermodynamics of which could be accurately modeled and parametrized. The tricomponent biohybrid photosystems displayed enhanced solar energy conversion via either direct chlorophyll-to-bacteriochlorophyll energy transfer or an indirect pathway enabled by the QD, with an overall energy transfer efficiency comparable to that seen in natural photosystems.


Assuntos
Arabidopsis , Rhodobacter sphaeroides , Arabidopsis/metabolismo , Transferência de Energia , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Rhodobacter sphaeroides/metabolismo , Tilacoides/metabolismo
5.
Nat Commun ; 11(1): 1542, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210238

RESUMO

Natural photosynthesis can be divided between the chlorophyll-containing plants, algae and cyanobacteria that make up the oxygenic phototrophs and a diversity of bacteriochlorophyll-containing bacteria that make up the anoxygenic phototrophs. Photosynthetic light harvesting and reaction centre proteins from both kingdoms have been exploited for solar energy conversion, solar fuel synthesis and sensing technologies, but the energy harvesting abilities of these devices are limited by each protein's individual palette of pigments. In this work we demonstrate a range of genetically-encoded, self-assembling photosystems in which recombinant plant light harvesting complexes are covalently locked with reaction centres from a purple photosynthetic bacterium, producing macromolecular chimeras that display mechanisms of polychromatic solar energy harvesting and conversion. Our findings illustrate the power of a synthetic biology approach in which bottom-up construction of photosystems using naturally diverse but mechanistically complementary components can be achieved in a predictable fashion through the encoding of adaptable, plug-and-play covalent interfaces.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Bactérias/química , Bacterioclorofilas/química , Complexos de Proteínas Captadores de Luz/química , Energia Solar , Biologia Sintética/métodos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/efeitos da radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/efeitos da radiação , Bacterioclorofilas/genética , Bacterioclorofilas/efeitos da radiação , Carotenoides/química , Carotenoides/efeitos da radiação , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/efeitos da radiação , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/efeitos da radiação , Luz Solar
6.
Synth Biol (Oxf) ; 4(1): ysz006, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32995533

RESUMO

This article presents the experience of a team of students and academics in developing a post-graduate training program in the new field of Synthetic Biology. Our Centre for Doctoral Training in Synthetic Biology (SynBioCDT) is an initiative funded by the United Kingdom's Research Councils of Engineering and Physical Sciences (EPSRC), and Biotechnology and Biological Sciences (BBSRC). SynBioCDT is a collaboration between the Universities of Oxford, Bristol and Warwick, and has been successfully running since 2014, training 78 students in this field. In this work, we discuss the organization of the taught, research and career development training. We also address the challenges faced when offering an interdisciplinary program. The article concludes with future directions to continue the development of the SynBioCDT.

7.
Small ; 15(4): e1804267, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30569587

RESUMO

Photoreaction centers facilitate the solar energy transduction at the heart of photosynthesis and there is increasing interest in their incorporation into biohybrid devices for solar energy conversion, sensing, and other applications. In this work, the self-assembly of conjugates between engineered bacterial reaction centers (RCs) and quantum dots (QDs) that act as a synthetic light harvesting system is described. The interface between protein and QD is provided by a polyhistidine tag that confers a tight and specific binding and defines the geometry of the interaction. Protein engineering that changes the pigment composition of the RC is used to identify Förster resonance energy transfer as the mechanism through which QDs can drive RC photochemistry with a high energy transfer efficiency. A thermodynamic explanation of RC/QD conjugation based on a multiple/independent binding model is provided. It is also demonstrated that the presence of multiple binding sites affects energy coupling not only between RCs and QDs but also among the bound RCs themselves, effects which likely stem from restricted RC dynamics at the QD surface in denser conjugates. These findings are readily transferrable to many other conjugate systems between proteins or combinations of proteins and other nanomaterials.


Assuntos
Engenharia de Proteínas/métodos , Pontos Quânticos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transferência Ressonante de Energia de Fluorescência , Fotoquímica/métodos , Ligação Proteica
8.
ACS Cent Sci ; 4(11): 1551-1558, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30555908

RESUMO

Acoustically trapped periodic arrays of horseradish peroxidase (HRP)-loaded poly(diallydimethylammonium chloride) / adenosine 5'-triphosphate coacervate microdroplet-based protocells exhibit a spatiotemporal biochemical response when exposed to a codiffusing mixture of substrate molecules (o-phenylenediamine (o-PD) and hydrogen peroxide (H2O2)) under nonequilibrium conditions. Unidirectional propagation of the chemical concentration gradients gives rise to time- and position-dependent fluorescence signal outputs from individual coacervate microdroplets, indicating that the organized protocell assembly can dynamically sense encoded information in the advancing reaction-diffusion front. The methodology is extended to arrays comprising spatially separated binary populations of HRP- or glucose oxidase-containing coacervate microdroplets to internally generate a H2O2 signal that chemically connects the two protocell communities via a concerted biochemical cascade reaction. Our results provide a step toward establishing a systematic approach to study dynamic interactions between organized protocell consortia and propagating reaction-diffusion gradients, and offer a new methodology for exploring the complexity of protocellular communication networks operating under nonequilibrium conditions.

9.
Faraday Discuss ; 207(0): 307-327, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29364305

RESUMO

Reaction centre/light harvesting proteins such as the RCLH1X complex from Rhodobacter sphaeroides carry out highly quantum-efficient conversion of solar energy through ultrafast energy transfer and charge separation, and these pigment-proteins have been incorporated into biohybrid photoelectrochemical cells for a variety of applications. In this work we demonstrate that, despite not being able to support normal photosynthetic growth of Rhodobacter sphaeroides, an engineered variant of this RCLH1X complex lacking the PufX protein and with an enlarged light harvesting antenna is unimpaired in its capacity for photocurrent generation in two types of bio-photoelectrochemical cells. Removal of PufX also did not impair the ability of the RCLH1 complex to act as an acceptor of energy from synthetic light harvesting quantum dots. Unexpectedly, the removal of PufX led to a marked improvement in the overall stability of the RCLH1 complex under heat stress. We conclude that PufX-deficient RCLH1 complexes are fully functional in solar energy conversion in a device setting and that their enhanced structural stability could make them a preferred choice over their native PufX-containing counterpart. Our findings on the competence of RCLH1 complexes for light energy conversion in vitro are discussed with reference to the reason why these PufX-deficient proteins are not capable of light energy conversion in vivo.


Assuntos
Fontes de Energia Elétrica , Proteínas Luminescentes/química , Engenharia de Proteínas , Rhodobacter sphaeroides/química , Energia Solar , Processos Fotoquímicos
10.
Biochim Biophys Acta ; 1857(12): 1829-1839, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27614060

RESUMO

A challenge associated with the utilisation of bioenergetic proteins in new, synthetic energy transducing systems is achieving efficient and predictable self-assembly of individual components, both natural and man-made, into a functioning macromolecular system. Despite progress with water-soluble proteins, the challenge of programming self-assembly of integral membrane proteins into non-native macromolecular architectures remains largely unexplored. In this work it is shown that the assembly of dimers, trimers or tetramers of the naturally monomeric purple bacterial reaction centre can be directed by augmentation with an α-helical peptide that self-associates into extra-membrane coiled-coil bundle. Despite this induced oligomerisation the assembled reaction centres displayed normal spectroscopic properties, implying preserved structural and functional integrity. Mixing of two reaction centres modified with mutually complementary α-helical peptides enabled the assembly of heterodimers in vitro, pointing to a generic strategy for assembling hetero-oligomeric complexes from diverse modified or synthetic components. Addition of two coiled-coil peptides per reaction centre monomer was also tolerated despite the challenge presented to the pigment-protein assembly machinery of introducing multiple self-associating sequences. These findings point to a generalised approach where oligomers or longer range assemblies of multiple light harvesting and/or redox proteins can be constructed in a manner that can be genetically-encoded, enabling the construction of new, designed bioenergetic systems in vivo or in vitro.


Assuntos
Proteínas de Bactérias/metabolismo , Metabolismo Energético , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteobactérias/metabolismo , Adaptação Fisiológica , Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Cinética , Luz , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Simulação de Dinâmica Molecular , Fotossíntese/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Proteobactérias/efeitos da radiação , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...