Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2940-2948, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381954

RESUMO

Ligustrum lucidum is a woody perennial plant of genus Ligustrum in family Oleaceae. Its dried fruit has high medicinal value. In this study, the authors evaluated the variability and species identification efficiency of three specific DAN barcodes(rbcL-accD, ycf1a, ycf1b) and four general DAN barcodes(matK, rbcL, trnH-psbA, ITS2) for a rapid and accurate molecular identification of Ligustrum species. The results revealed that matK, rbcL, trnH-psbA, ITS2 and ycf1a were inefficient for identifying the Ligustrum species, and a large number of insertions and deletions were observed in rbcL-accD sequence, which was thus unsuitable for development as specific barcode. The ycf1b-2 barcode had DNA barcoding gap and high success rate of PCR amplification and DNA sequencing, which was the most suitable DNA barcode for L. lucidum identification and achieved an accurate result. In addition, to optimize the DNA extraction experiment, the authors extracted and analyzed the DNA of the exocarp, mesocarp, endocarp and seed of L. lucidum fruit. It was found that seed was the most effective part for DNA extraction, where DNAs of high concentration and quality were obtained, meeting the needs of species identification. In this study, the experimental method for DNA extraction of L. lucidum was optimized, and the seed was determined as the optimal part for DNA extraction and ycf1b-2 was the specific DNA barcode for L. lucidum identification. This study laid a foundation for the market regulation of L. lucidum.


Assuntos
Ligustrum , Ligustrum/genética , Sementes , Frutas , Reação em Cadeia da Polimerase , Projetos de Pesquisa
2.
Protein Pept Lett ; 28(5): 533-542, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33172365

RESUMO

BACKGROUND: Human growth hormone (hGH) is the first recombinant protein approved for the treatment of human growth hormone deficiency. However, expression in inclusion bodies and low expression levels are enormous challenges for heterologous expression of hGH in Escherichia coli. OBJECTIVE: To increase the soluble expression of recombinant hGH with correct folding in E. coli. METHODS: We constructed a new recombinant expression plasmid containing the coding sequence of the outer membrane protein A (ompA3) which was used for the expression in Transetta (DE3) E. coli. In order to simplify the purification process and cleavage of recombinant proteins, the fusion sequence should contain hexahistidine-tag (His6) and enterokinase recognition sites (D4K). The effect of different expression conditions on recombinant hGH expression was optimized in flask cultivations. Furthermore, the periplasmic solution containing soluble hGH was purified by Ni-NTA affinity chromatography. Circular dichroism (CD), western blot and mass spectrometry analyses were used to characterize the protein. Moreover, the growth-promoting effect of the purified hGH was also evaluated by cell proliferation assay. RESULTS: High-level expression (800 µg/mL) was achieved by induction with 0.5 mM IPTG at 30°C for 10 hours. The purity of hGH was over 90%. The immunological activity, secondary structure and molecular weight of the purified hGH were consistent with native hGH. The purified hGH was found to promote the growth of MC3T3-E1 cells, and was found to show the highest activity at a concentration of 100 ng/mL. CONCLUSION: Our research provides a feasible and convenient method for the soluble expression of recombinant hGH in E. coli, and may lay a foundation for the production and application of hGH in the industry.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Escherichia coli , Hormônio do Crescimento Humano , Proteínas Recombinantes de Fusão , Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Hormônio do Crescimento Humano/biossíntese , Hormônio do Crescimento Humano/química , Hormônio do Crescimento Humano/genética , Hormônio do Crescimento Humano/isolamento & purificação , Humanos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
3.
Medchemcomm ; 9(1): 181-188, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108912

RESUMO

Strigolactones (SLs) are a novel class of plant hormones with enormous potential for the prevention and treatment of inflammation. To further investigate the anti-inflammatory activities of SLs, a representative SL, GR24, and the reductive products of its D-ring were synthesized and their anti-inflammatory activities were fully evaluated on both in vitro and in vivo models. Among these compounds, the two most active optical isomers (2a and 6a) demonstrated strong inhibitory activity on the release of inflammatory cytokines, including nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) by blocking the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways; they also greatly inhibited the migration of neutrophils and macrophages in fluorescent protein labeled zebrafish larvae. These results identified the promising anti-inflammatory effects of SLs, and suggested that both the absolute configuration of SL and the α,ß-unsaturated D-ring structure are essential for the observed anti-inflammatory activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...