Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Gene ; 927: 148633, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838871

RESUMO

Depression, which is a disease of heterogeneous etiology, is characterized by high disability and mortality rates. Gut microbiota are associated with the development of depression. To further explore any differences in the mechanisms of depression induced by gut microbiota and traditional stresses, as well as facilitate the development of microbiota-based interventions, a fecal microbiota transplantation (FMT) depression model was made. This was achieved by transplanting feces from major depressive disorder (MDD) patients into germ-free mice. Second, the mechanisms of the depression induced by gut microbiota were analyzed in comparison with those of the depression caused by different forms of stress. It turned out that mice exhibited depressive-like behavior after FMT. Then, PCR array analysis was performed on the hippocampus of the depressed mice to identify differentially expressed genes (DEGs). The KEGG analysis revealed that the pathways of depression induced by gut microbes are closely associated with immuno-inflammation. To determine the pathogenic pathways of physiological stress and psychological stress-induced depression, raw data was extracted from several databases and KEGG analysis was performed. The results from the analysis revealed that the mechanisms of depression induced by physiological and psychological stress are closely related to the regulation of neurotransmitters and energy metabolism. Interestingly, the immunoinflammatory response was distinct across different etiologies that induced depression. The findings showed that gut microbiota dysbiosis-induced depression was mainly associated with adaptive immunity, while physiological stress-induced depression was more linked to innate immunity. This study compared the pathogenesis of depression caused by gut microbiota dysbiosis, and physiological and psychological stress. We explored new intervention methods for depression and laid the foundation for precise treatment.

2.
Front Immunol ; 15: 1359914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646539

RESUMO

Worldwide, gastrointestinal (GI) cancer is recognized as one of the leading malignancies diagnosed in both genders, with mortality largely attributed to metastatic dissemination. It has been identified that in GI cancer, a variety of signaling pathways and key molecules are modified, leading to the emergence of an immunotolerance phenotype. Such modifications are pivotal in the malignancy's evasion of immune detection. Thus, a thorough analysis of the pathways and molecules contributing to GI cancer's immunotolerance is vital for advancing our comprehension and propelling the creation of efficacious pharmacological treatments. In response to this necessity, our review illuminates a selection of groundbreaking cellular signaling pathways associated with immunotolerance in GI cancer, including the Phosphoinositide 3-kinases/Akt, Janus kinase/Signal Transducer and Activator of Transcription 3, Nuclear Factor kappa-light-chain-enhancer of activated B cells, Transforming Growth Factor-beta/Smad, Notch, Programmed Death-1/Programmed Death-Ligand 1, and Wingless and INT-1/beta-catenin-Interleukin 10. Additionally, we examine an array of pertinent molecules like Indoleamine-pyrrole 2,3-dioxygenase, Human Leukocyte Antigen G/E, Glycoprotein A Repetitions Predominant, Clever-1, Interferon regulatory factor 8/Osteopontin, T-cell immunoglobulin and mucin-domain containing-3, Carcinoembryonic antigen-related cell adhesion molecule 1, Cell division control protein 42 homolog, and caspases-1 and -12.


Assuntos
Neoplasias Gastrointestinais , Transdução de Sinais , Humanos , Neoplasias Gastrointestinais/imunologia , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/metabolismo , Animais , Metástase Neoplásica , Tolerância Imunológica , Evasão Tumoral
3.
Nanoscale Adv ; 6(8): 1997-2001, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633051

RESUMO

Herein, F-doped CDs with bright red SSF were synthesized by a solvothermal method using trifluoroethanol as the solvent and m-hydroxybenzaldehyde as the carbon source. Strong F-F interactions are vital for inducing crystallization, and solid luminescence is achieved by blocking the nonradiative energy dissipation pathways of crystalline organizations.

4.
Physiol Behav ; 279: 114530, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552706

RESUMO

Depression is a serious mental illness. Previous studies found that early life stress (ELS) plays a vital role in the onset and progression of depression. However, relevant studies have not yet been able to explain the specific effects of early stress on stress-induced depression sensitivity and individual behavior during growth. Therefore, we constructed a maternal separation (MS) model and administered chronic social frustration stress at different stages of their growth while conducting metabolomics analysis on the hippocampus of mice. Our results showed that the immobility time of mice in the forced swimming test was significantly reduced at the end of MS. Meanwhile, mice with MS experience significantly decreased total movement distance in the open field test and sucrose preference ratio in the sucrose preference test when subjected to chronic social defeat stress (CSDS) during adolescence. In adulthood, the results were the opposite. In addition, we found that level changes in metabolites such as Beta-alanine, l-aspartic acid, 2-aminoadipic acid, and Glycine are closely related to behavioral changes. These metabolites are mainly enriched in Pantothenate, CoA biosynthesis, and Beta Alanine metabolism pathways. Our experiment revealed that the effects of ELS vary across different age groups. It will increase an individual's sensitivity to depression when facing CSDS in adolescence, but it will reduce their sensitivity to depression when facing CSDS in adulthood. This may be achieved by regulating the hippocampus's Pantothenate and CoA biosynthesis and Beta Alanine metabolism pathways represented by Beta-alanine, l-Aspartic acid, 2-aminoadipic acid, and Glycine metabolites.


Assuntos
Depressão , Privação Materna , Camundongos , Animais , Depressão/etiologia , Depressão/metabolismo , Ácido 2-Aminoadípico/metabolismo , Ácido 2-Aminoadípico/farmacologia , Hipocampo/metabolismo , Glicina/farmacologia , Sacarose/farmacologia , beta-Alanina/metabolismo , beta-Alanina/farmacologia , Estresse Psicológico/metabolismo , Comportamento Animal/fisiologia , Modelos Animais de Doenças
5.
J Intern Med ; 295(5): 634-650, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38439117

RESUMO

BACKGROUND: The immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is crucial for preventing infections and relapse and enhancing graft-versus-tumor effects. B cells play an important role in humoral immunity and immune regulation, but their reconstitution after allo-HSCT has not been well studied. METHODS: In this study, we analyzed the dynamics of B cells in 252 patients who underwent allo-HSCT for 2 years and assessed the impact of factors on B-cell reconstitution and their correlations with survival outcomes, as well as the development stages of B cells in the bone marrow and the subsets in the peripheral blood. RESULTS: We found that the B-cell reconstitution in the bone marrow was consistent with the peripheral blood (p = 0.232). B-cell reconstitution was delayed by the male gender, age >50, older donor age, the occurrence of chronic and acute graft-versus-host disease, and the infections of fungi and cytomegalovirus. The survival analysis revealed that patients with lower B cells had higher risks of death and relapse. More importantly, we used propensity score matching to obtain the conclusion that post-1-year B-cell reconstitution is better in females. Meanwhile, using mediation analysis, we proposed the age-B cells-survival axis and found that B-cell reconstitution at month 12 posttransplant mediated the effect of age on patient survival (p = 0.013). We also found that younger patients showed more immature B cells in the bone marrow after transplantation (p = 0.037). CONCLUSION: Our findings provide valuable insights for optimizing the management of B-cell reconstitution and improving the efficacy and safety of allo-HSCT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Feminino , Humanos , Masculino , Transplante Homólogo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/epidemiologia , Linfócitos B , Recidiva
6.
Environ Res ; 252(Pt 1): 118252, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38320716

RESUMO

To effectively remove tannic acid (TA) from wastewater, using green and natural materials has attracted increasing attention. Inspired by Galla Chinensis (GC) with high content of TA, this study synthesized a biomimetic porous adsorbent to mimic the GC structure using dialdehyde tapioca starch (DTS) and gelatin (GL). The TA adsorption performance and mechanism of synthetic porous material were investigated. Results revealed that the porous material exhibited a maximum TA adsorption capacity of 1072.01 mg/g, along with a high removal rate of 95.16% under the conditions of a DTS-GL mass ratio of 1:1, DTS aldehyde content of 48.16%, a solid content of 5%, and a pH of 2 at 25 °C. The adsorption of TA by DTS was not affected by water-soluble cationic and anion. The adsorption kinetics of TA on the porous material followed the pseudo-second-order model, and this Langmuir adsorption model (R2 = 0.9954) which were well described the adsorption of TA by the material, indicating that the adsorption primarily occurred in a monolayer. FTIR, XRD, DSC, TG, XPS, and SEM-EDS were employed to characterize the structure characteristics of the porous material. The cross-linking between DTS and GL by Schiff base reaction imparted a chemical structure could absorb TA by hydrogen bonding. The TA desorption rates of in 30% acetone and 40% ethanol solutions were 88.76% and 91.03%, respectively. The porous material prepared by the GC-inspired approach holds promise as an ideal choice for loading polyphenolic compounds and provides a new perspective for the design and application of bioinspired engineering materials.


Assuntos
Materiais Biomiméticos , Taninos , Águas Residuárias , Poluentes Químicos da Água , Taninos/química , Águas Residuárias/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Porosidade , Materiais Biomiméticos/química , Gelatina/química , Purificação da Água/métodos , Manihot/química , Eliminação de Resíduos Líquidos/métodos , Cinética
7.
Artigo em Inglês | MEDLINE | ID: mdl-38329869

RESUMO

Transcranial ultrasound stimulation (TUS) is a noninvasive brain neuromodulation technique. The application of TUS for Alzheimer's disease (AD) therapy has not been widely studied. In this study, a long-term course (28 days) of TUS was used to stimulate the hippocampus of APP/PS1 mice. We examined the modulatory effect of TUS on behavior and neural oscillation in AD mice. We found that TUS can 1) improve the learning and memory abilities of AD mice; 2) reduce the phase-amplitude coupling of delta-epsilon, delta-gamma and theta-gamma frequency bands of local field potential, and increase the relative power of epsilon frequency bands in AD mice; 3) reduce the spike firing rate of interneurons and inhibit the phase-locked angle deflection between the theta frequency bands and the spikes of the two types of neurons that develops with the progression of the disease in AD mice. In summary, we demonstrate that TUS could effectively improve cognitive behavior and modulate neural oscillation with AD.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/terapia , Hipocampo , Aprendizagem , Modelos Animais de Doenças
8.
BMC Neurosci ; 25(1): 8, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350864

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide, and destruction of the cerebrovascular system is a major factor in the cascade of secondary injuries caused by TBI. Laser speckle imaging (LSCI)has high sensitivity in detecting cerebral blood flow. LSCI can visually show that transcranial focused ultrasound stimulation (tFUS) treatment stimulates angiogenesis and increases blood flow. To study the effect of tFUS on promoting angiogenesis in Controlled Cortical impact (CCI) model. tFUS was administered daily for 10 min and for 14 consecutive days after TBI. Cerebral blood flow was measured by LSCI at 1, 3, 7 and 14 days after trauma. Functional outcomes were assessed using LSCI and neurological severity score (NSS). After the last test, Nissl staining and vascular endothelial growth factor (VEGF) were used to assess neuropathology. TBI can cause the destruction of cerebrovascular system. Blood flow was significantly increased in TBI treated with tFUS. LSCI, behavioral and histological findings suggest that tFUS treatment can promote angiogenesis after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/patologia , Circulação Cerebrovascular/fisiologia
9.
Exp Neurol ; 371: 114588, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907126

RESUMO

Traumatic brain injury (TBI) precipitates cellular membrane degeneration, phospholipid degradation, neuronal demise, impaired brain electrical activity, and compromised neuroplasticity, ultimately leading to acute and chronic brain dysfunction. Low-intensity pulsed ultrasound (LIPUS) is an emerging brain therapy with the characteristics of non-invasive, high spatial resolution, and high stimulation depth. Herein, we established a controlled cortical impact model to investigate the potential reparative mechanisms of LIPUS in TBI, employing a multi-faceted research methodology encompassing behavioral assessments, immunofluorescence, neuroelectrophysiology, scratch detection of primary cortical neurons, metabolomics and transcriptomics. Our findings demonstrate that LIPUS promotes hippocampal neurogenesis following brain injury, accomplished through the elevation of phosphatidylcholine levels in the hippocampus of TBI mice. Consequently, LIPUS enhances neural electrical activity and augments neural plasticity within the CA1 subregion of the hippocampus, effectively restoring neuronal function and cognitive capabilities in TBI mice. These findings shed light on the promising role of LIPUS in TBI brain rehabilitation, offering new perspectives and theoretical foundations for future studies in this domain.


Assuntos
Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Camundongos , Animais , Modelos Animais de Doenças , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/terapia , Neurogênese/fisiologia , Ondas Ultrassônicas , Hipocampo
10.
Zool Res ; 45(1): 95-107, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114436

RESUMO

The gut microbiome interacts with the host to maintain body homeostasis, with gut microbial dysbiosis implicated in many diseases. However, the underlying mechanisms of gut microbe regulation of host behavior and brain functions remain unclear. This study aimed to elucidate the influence of gut microbiota on brain functions via post-translational modification mechanisms in the presence or absence of bacteria without any stimulation. We conducted succinylome analysis of hippocampal proteins in germ-free (GF) and specific pathogen-free (SPF) mice and metagenomic analysis of feces from SPF mice. These results were integrated with previously reported hippocampal acetylome and phosphorylome data from the same batch of mice. Subsequent bioinformatics analyses revealed 584 succinylation sites on 455 proteins, including 54 up-regulated succinylation sites on 91 proteins and 99 down-regulated sites on 51 proteins in the GF mice compared to the SPF mice. We constructed a panoramic map of gut microbiota-regulated succinylation, acetylation, and phosphorylation, and identified cross-talk and relative independence between the different types of post-translational modifications in modulating complicated intracellular pathways. Pearson correlation analysis indicated that 13 taxa, predominantly belonging to the Bacteroidetes phylum, were correlated with the biological functions of post-translational modifications. Positive correlations between these taxa and succinylation and negative correlations between these taxa and acetylation were identified in the modulation of intracellular pathways. This study highlights the hippocampal physiological changes induced by the absence of gut microbiota, and proteomic quantification of succinylation, phosphorylation, and acetylation, contributing to our understanding of the role of the gut microbiome in brain function and behavioral phenotypes.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Lisina/metabolismo , Interações entre Hospedeiro e Microrganismos , Proteômica/métodos , Processamento de Proteína Pós-Traducional
11.
Expert Rev Proteomics ; 20(12): 397-418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37934939

RESUMO

INTRODUCTION: An increasing number of studies indicate that the microbiota-gut-brain axis is an important pathway involved in the onset and progression of depression. The responses of the organism (or its microorganisms) to external cues cannot be separated from a key intermediate element: their metabolites. AREAS COVERED: In recent years, with the rapid development of metabolomics, an increasing amount of metabolites has been detected and studied, especially the gut metabolites. Nevertheless, the increasing amount of metabolites described has not been reflected in a better understanding of their functions and metabolic pathways. Moreover, our knowledge of the biological interactions among metabolites is also incomplete, which limits further studies on the connections between the microbial-entero-brain axis and depression. EXPERT OPINION: This paper summarizes the current knowledge on depression-related metabolites and their involvement in the onset and progression of this disease. More importantly, this paper summarized metabolites from the intestine, and defined them as enterogenic metabolites, to further clarify the function of intestinal metabolites and their biochemical cross-talk, providing theoretical support and new research directions for the prevention and treatment of depression.


Assuntos
Microbioma Gastrointestinal , Humanos , Depressão , Metabolômica , Metaboloma , Encéfalo
13.
Anal Chim Acta ; 1284: 341968, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37996155

RESUMO

Many endogenous antioxidants, including glutathione (GSH), cysteine (Cys), cysteinyl-glycine (Cys-Gly) and homocysteine (Hcy) possess free thiol functional groups. In most cases, matrix-assisted laser desorption ionization (MALDI) analyses of trace amounts of thiol compounds are challenging because of their instability and poor ionization properties. We present a mass spectrometry imaging (MSI) approach for mapping of thiol compounds on brain tissue sections. Our derivatization reagents 1-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-2,4,6-trimethylpyridinium (MTMP) and 1-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-2,4,5-triphenylpyridinium (MTPP) facilitate the covalent charge-tagging of molecules containing free thiol group for the selective and rapid detection of GSH synthesis and metabolic pathway related metabolites by MALDI-MSI. The developed thiol-specific mass spectrometry imaging method realizes the quantitative detection of exogenous N-acetylcysteine tissue sections, and the detection limit in mass spectrometry imaging could reach 0.05 ng. We illustrate the capabilities of the developed method to mapping of thiol compounds on brain tissue from the chronic social defeat stress (CSDS) depression model mice.


Assuntos
Glutationa , Compostos de Sulfidrila , Camundongos , Animais , Compostos de Sulfidrila/análise , Glutationa/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Acetilcisteína , Compostos de Enxofre
14.
Foods ; 12(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37835219

RESUMO

In this study, we addressed various challenges associated with the consumption of functional lipids from the Ericerus pela (Chavannes), including unfavorable taste, insolubility in water, difficulty in oral intake, low bioavailability, and low psychological acceptance. Our study focused on the microencapsulation of policosanol, the key active component of insect wax, which is a mixture of functional lipids secreted by the Ericerus pela (Chavannes). We developed two innovative policosanol products, microcapsules, and effervescent tablets, and optimized their preparation conditions. We successfully prepared microcapsules containing insect wax-derived policosanol using the spray-drying method. We achieved 92.09% microencapsulation efficiency and 61.67% powder yield under the following conditions: maltodextrin, starch sodium octenyl succinate, and (2-hydroxy)propyl-ß-cyclodextrin (HPßCD) at a ratio of 1:1:1, core-to-wall materials at a ratio of 1:10, 15% solid content, spray dryer feed temperature at 60 °C, inlet air temperature at 140 °C, and hot-air flow rate at 0.5 m3/min. The microcapsules exhibited a regular spherical shape with a minimal water content (1.82%) and rapid dispersion in water (within 143.5 s). These microcapsules released policosanol rapidly in simulated stomach fluid. Moreover, effervescent tablets were prepared using the policosanol-containing microcapsules. The tablets showed low friability (0.32%), quick disintegration in water (within 99.5 s), and high bubble volume. The microcapsules and effervescent tablets developed in this study presented effective solutions to the insolubility of policosanol in water. These products were portable and offered customizable tastes to address the psychological discomfort related to insect-based foods, thus providing a novel strategy for the consumption and secondary processing of insect lipids.

15.
ACS Appl Mater Interfaces ; 15(37): 43294-43308, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37695271

RESUMO

Developing safe and effective wound dressings that address the complexities of wound healing is an ongoing goal in biomaterials research. Inspired by the shield used to protect lac insects, we have designed and developed a type of bioactive shellac-based wound dressing in this paper. The dressing exhibited a high adhesion energy of 146.6 J·m-2 in porcine skin and showed a reversible binding due to its pH sensitivity. Meanwhile, a novel "shellac-like" compound, n-octacosanol gallate ester, has been synthesized and added to the dressing to improve its antibacterial and blood coagulation properties. The novel shellac-based dressing could be sprayed to form a sticky film within 70 s for rapid hemostasis and wound sealing, which could be conveniently applied to various wounds on extensible body parts. In addition, the shellac-based dressing can actively promote the healing of a full-thickness wound in the skin of mice. We also used molecular dynamics simulations to investigate the interactions between the shellac molecule and the phospholipid bilayer and attempted to show that the shellac molecule was beneficial for wound healing. This work provides a novel and practical bioinspired wound dressing with significant properties, facile preparation, and ease of use, which is an interesting alternative to its traditional counterparts.


Assuntos
Pele , Cicatrização , Suínos , Animais , Camundongos , Resinas Vegetais , Bandagens
16.
Nat Neurosci ; 26(8): 1352-1364, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37443281

RESUMO

Major depressive disorder represents a serious public health challenge worldwide; however, the underlying cellular and molecular mechanisms are mostly unknown. Here, we profile the dorsolateral prefrontal cortex of female cynomolgus macaques with social stress-associated depressive-like behaviors using single-nucleus RNA-sequencing and spatial transcriptomics. We find gene expression changes associated with depressive-like behaviors mostly in microglia, and we report a pro-inflammatory microglia subpopulation enriched in the depressive-like condition. Single-nucleus RNA-sequencing data result in the identification of six enriched gene modules associated with depressive-like behaviors, and these modules are further resolved by spatial transcriptomics. Gene modules associated with huddle and sit alone behaviors are expressed in neurons and oligodendrocytes of the superficial cortical layer, while gene modules associated with locomotion and amicable behaviors are enriched in microglia and astrocytes in mid-to-deep cortical layers. The depressive-like behavior associated microglia subpopulation is enriched in deep cortical layers. In summary, our findings show cell-type and cortical layer-specific gene expression changes and identify one microglia subpopulation associated with depressive-like behaviors in female non-human primates.


Assuntos
Transtorno Depressivo Maior , Microglia , Animais , Humanos , Feminino , Microglia/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Transcriptoma , RNA , Macaca , Depressão/genética
17.
Future Oncol ; 19(8): 587-601, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37097730

RESUMO

Aim: To develop and validate a radiomics-based combined model (ModelRC) to predict the pathological grade of endometrial cancer. Methods: A total of 403 endometrial cancer patients from two independent centers were enrolled as training, internal validation and external validation sets. Radiomic features were extracted from T2-weighted images, apparent diffusion coefficient map and contrast-enhanced 3D volumetric interpolated breath-hold examination images. Results: Compared with the clinical model and radiomics model, ModelRC showed superior performance; the areas under the receiver operating characteristic curves were 0.920 (95% CI: 0.864-0.962), 0.882 (95% CI: 0.779-0.955) and 0.881 (95% CI: 0.815-0.939) for the training, internal validation and external validation sets, respectively. Conclusion: ModelRC, which incorporated clinical and radiomic features, exhibited excellent performance in the prediction of high-grade endometrial cancer.


Accurate preoperative evaluation of the pathological grade of endometrial carcinoma is very important for the selection of treatment and prognosis. This study tried to develop a simple combined model based on radiomic features from endometrial carcinoma MRI and clinical features of patients. Compared with the clinical model and the radiomic model, the combined model showed superior performance. Therefore, this combined model would help patients and clinicians to make more rational decisions when choosing treatment strategies.


Assuntos
Neoplasias do Endométrio , Imageamento por Ressonância Magnética , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Imagem de Difusão por Ressonância Magnética , Endométrio , Neoplasias do Endométrio/diagnóstico por imagem , Neoplasias do Endométrio/cirurgia
18.
EBioMedicine ; 90: 104527, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963238

RESUMO

Major depressive disorder is one of the most disabling mental disorders worldwide. Increasing preclinical and clinical studies have highlighted that compositional and functional (e.g., metabolite) changes in gut microbiota, known as dysbiosis, are associated with the onset and progression of depression via regulating the gut-brain axis. However, the gut microbiota and their metabolites present a double-edged sword in depression. Dysbiosis is involved in the pathogenesis of depression while, at the same time, offering a novel therapeutic target. In this review, we describe the association between dysbiosis and depression, drug-microbiota interactions in antidepressant treatment, and the potential health benefits of microbial-targeted therapeutics in depression, including dietary interventions, fecal microbiota transplantation, probiotics, prebiotics, synbiotics, and postbiotics. With the emergence of microbial research, we describe a new direction for future research and clinical treatment of depression.


Assuntos
Transtorno Depressivo Maior , Microbioma Gastrointestinal , Probióticos , Humanos , Depressão/etiologia , Depressão/terapia , Disbiose/terapia , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Maior/complicações , Probióticos/uso terapêutico , Transplante de Microbiota Fecal
19.
Mol Psychiatry ; 28(4): 1611-1621, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914812

RESUMO

Clinical and animal studies have shown that gut microbiome disturbances can affect neural function and behaviors via the microbiota-gut-brain axis, and may be implicated in the pathogenesis of several brain diseases. However, exactly how the gut microbiome modulates nervous system activity remains obscure. Here, using a single-cell nucleus sequencing approach, we sought to characterize the cell type-specific transcriptomic changes in the prefrontal cortex and hippocampus derived from germ-free (GF), specific pathogen free, and colonized-GF mice. We found that the absence of gut microbiota resulted in cell-specific transcriptomic changes. Furthermore, microglia transcriptomes were preferentially influenced, which could be effectively reversed by microbial colonization. Significantly, the gut microbiome modulated the mutual transformation of microglial subpopulations in the two regions. Cross-species analysis showed that the transcriptome changes of these microglial subpopulations were mainly associated with Alzheimer's disease (AD) and major depressive disorder (MDD), which were further supported by animal behavioral tests. Our findings demonstrate that gut microbiota mainly modulate the mutual transformation of microglial subtypes, which may lead to new insights into the pathogenesis of AD and MDD.


Assuntos
Doença de Alzheimer , Transtorno Depressivo Maior , Microbioma Gastrointestinal , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Microglia , Depressão , Córtex Pré-Frontal
20.
Environ Technol ; : 1-7, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36727477

RESUMO

ABSTRACTLithium cobalt oxide (LCO) has been employed as cathode material for 40 years. However, the low solubility of LCOs in water and strong electrostatic force and H-bonding between the LCOs particles limited the use of the aqueous binders in the LCO system. We report a feasible and universal approach to fabricating a complex cathode of LCO and reduced graphene oxide (RGO). Tannic acid (TA) could simultaneously disperse LCO and RGO particles. Meanwhile, the branched polyphenol TA acts as a 'bridge' molecule for connecting the LCO and RGO, confirmed by the SEM test. The rheology properties of the PVDF slurry of cathode materials (LCO, LCO/, RGO, and TA/LCO/RGO) were also determined. It could be found that the TA could act as a crosslinking agent for the LCO and RGO particles, increasing the viscosity and storage modulus of the slurry. The cell employed the TA/LCO/RGO slurry as the cathode material, have a higher areal capacity, and had a higher redox potential than employed LCO/RGO and LCO as cathode materials, all of which could be attributed to the addition of the TA. This green molecule can be used to fabricate environmentally friendly and possibly biodegradable electrochemical energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...