Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
2.
Theranostics ; 14(8): 3300-3316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855182

RESUMO

Patient-derived organoids (PDOs) have emerged as a promising platform for clinical and translational studies. A strong correlation exists between clinical outcomes and the use of PDOs to predict the efficacy of chemotherapy and/or radiotherapy. To standardize interpretation and enhance scientific communication in the field of cancer precision medicine, we revisit the concept of PDO-based drug sensitivity testing (DST). We present an expert consensus-driven approach for medication selection aimed at predicting patient responses. To further standardize PDO-based DST, we propose guidelines for clarification and characterization. Additionally, we identify several major challenges in clinical prediction when utilizing PDOs.


Assuntos
Antineoplásicos , Consenso , Desenvolvimento de Medicamentos , Neoplasias , Organoides , Medicina de Precisão , Organoides/efeitos dos fármacos , Humanos , Medicina de Precisão/métodos , Neoplasias/tratamento farmacológico , Desenvolvimento de Medicamentos/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais/métodos
3.
Nat Commun ; 15(1): 5209, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890388

RESUMO

Despite the importance of spliceosome core components in cellular processes, their roles in cancer development, including hepatocellular carcinoma (HCC), remain poorly understood. In this study, we uncover a critical role for SmD2, a core component of the spliceosome machinery, in modulating DNA damage in HCC through its impact on BRCA1/FANC cassette exons and expression. Our findings reveal that SmD2 depletion sensitizes HCC cells to PARP inhibitors, expanding the potential therapeutic targets. We also demonstrate that SmD2 acetylation by p300 leads to its degradation, while HDAC2-mediated deacetylation stabilizes SmD2. Importantly, we show that the combination of Romidepsin and Olaparib exhibits significant therapeutic potential in multiple HCC models, highlighting the promise of targeting SmD2 acetylation and HDAC2 inhibition alongside PARP inhibitors for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Éxons , Neoplasias Hepáticas , Ftalazinas , Piperazinas , Inibidores de Poli(ADP-Ribose) Polimerases , Spliceossomos , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Acetilação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Spliceossomos/metabolismo , Spliceossomos/efeitos dos fármacos , Linhagem Celular Tumoral , Ftalazinas/farmacologia , Éxons/genética , Piperazinas/farmacologia , Animais , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Depsipeptídeos/farmacologia , Depsipeptídeos/uso terapêutico , Camundongos , Dano ao DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
4.
Ther Adv Med Oncol ; 16: 17588359241258394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882444

RESUMO

Background: Adjuvant therapy is used to reduce the risk of hepatocellular carcinoma (HCC) recurrence and improve patient prognosis. Exploration of treatment strategies that are both efficacious and safe has been extensively performed in the recent years. Although donafenib has demonstrated good efficacy in the treatment of advanced HCC, its use as adjuvant therapy in HCC has not been reported. Objectives: To investigate the efficacy and safety of postoperative adjuvant donafenib treatment in patients with HCC at high-risk of recurrence. Design: Retrospective study. Methods: A total of 196 patients with HCC at high-risk of recurrence were included in this study. Of these, 49 received adjuvant donafenib treatment, while 147 did not. Survival outcomes and incidence of adverse events (AEs) in the donafenib-treated group were compared. Inverse probability of treatment weighting (IPTW) method was used. Results: The median follow-up duration was 21.8 months [interquartile range (IQR) 17.2-27.1]. Before IPTW, the donafenib-treated group exhibited a significantly higher 1-year recurrence-free survival (RFS) rate (83.7% versus 66.7%, p = 0.023) than the control group. Contrarily, no significant difference was observed in the 1-year overall survival (OS) rates between the two groups (97.8% versus 91.8%, p = 0.120). After IPTW, the 1-year RFS and OS rates (86.6% versus 64.8%, p = 0.004; 97.9% versus 89.5%, p = 0.043, respectively) were higher than those in the control group. Multivariate analysis revealed that postoperative adjuvant donafenib treatment was an independent protective factor for RFS. The median duration of adjuvant donafenib treatment was 13.6 (IQR, 10.7-18.1) months, with 44 patients (89.8%) experienced AEs, primarily grade 1-2 AEs. Conclusion: Postoperative adjuvant donafenib treatment effectively reduced early recurrence among patients with HCC at high-risk of recurrence, while exhibiting favorable safety and tolerability profile. However, these findings warrant further investigation.


Comparison of the outcomes of patients with HCC with or without donafenib after radical resection to better understand the efficacy and safety of postoperative adjuvant donafenib Why was this study done? Donafenib is the only new-generation targeted drug developed in the past 14 years that has demonstrated superior efficacy and increased safety in the first-line treatment of HCC. We aimed to explore whether postoperative adjuvant donafenib can improve the prognosis of patients with HCC at high-risk of recurrence. What did the researchers do? Medical data of patients with HCC at high-risk of recurrence who underwent radical resection at two medical centers between April 2021 and October 2022 were collected to compare long-term outcomes of patients treated with and without donafenib and explore the safety of adjuvant donafenib treatment. What did the researchers find? A total of 196 patients with HCC at high-risk of recurrence, including 49 who received adjuvant donafenib treatment and 147 who did not, were analyzed. At a median follow-up of 21.8 months, it was observed that adjuvant donafenib treatment effectively reduced early recurrence among patients with HCC at high-risk of recurrence, while exhibiting favorable safety and compliance profiles. What do the findings mean? The study provides real-world clinical empirical data on adjuvant donafenib treatment for patients with HCC at high-risk of recurrence, and these results may provide new directions for adjuvant treatment of HCC.

5.
Cell Discov ; 10(1): 57, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38802351

RESUMO

Glutamine addiction represents a metabolic vulnerability of cancer cells; however, effective therapeutic targeting of the pathways involved remains to be realized. Here, we disclose the critical role of interferon-related developmental regulator 1 (IFRD1) in the adaptive survival of hepatocellular carcinoma (HCC) cells during glutamine starvation. IFRD1 is induced under glutamine starvation to inhibit autophagy by promoting the proteasomal degradation of the key autophagy regulator ATG14 in a TRIM21-dependent manner. Conversely, targeting IFRD1 in the glutamine-deprived state increases autophagy flux, triggering cancer cell exhaustive death. This effect largely results from the nucleophilic degradation of histone H1.0 and the ensuing unchecked increases in ribosome and protein biosynthesis associated with globally enhanced chromatin accessibility. Intriguingly, IFRD1 depletion in preclinical HCC models synergizes with the treatment of the glutaminase-1 selective inhibitor CB-839 to potentiate the effect of limiting glutamine. Together, our findings reveal how IFRD1 supports the adaptive survival of cancer cells under glutamine starvation, further highlighting the potential of IFRD1 as a therapeutic target in anti-cancer applications.

6.
Sci Rep ; 14(1): 9745, 2024 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679630

RESUMO

Systemic therapy is typically the primary treatment choice for hepatocellular carcinoma (HCC) patients with extrahepatic metastases. Some patients may achieve partial response (PR) or complete response (CR) with systemic treatment, leading to the possibility of their primary tumor becoming resectable. This study aimed to investigate whether these patients could achieve longer survival through surgical resection of their primary tumor. We retrospectively collected data from 150 HCC patients with extrahepatic metastases treated at 15 different centers from January 1st, 2015, to November 30th, 2022. We evaluated their overall survival (OS) and progress-free survival (PFS) and analyzed risk factors impacting both OS and PFS were analyzed. Patients who received surgical treatment had longer OS compared to those who did not (median OS 16.5 months vs. 11.3 months). However, there was no significant difference in progression-free survival between the two groups. Portal vein invasion (P = 0.025) was identified as a risk factor for poor prognosis in patients, while effective first-line treatment (P = 0.039) and surgical treatment (P = 0.005) were protective factors. No factors showed statistical significance in the analysis of PFS. Effective first-line treatment (P = 0.027) and surgical treatment (P = 0.006) were both independent protective factors for prolonging patient prognosis, while portal vein invasion was an independent risk factor (P = 0.044). HCC patients with extrahepatic metastases who achieve PR/CR with conversion therapy may experience longer OS through surgical treatment. This study is the first to analyze the clinical outcomes of patients receiving surgical treatment for HCC with extrahepatic metastases.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Adulto , Prognóstico , Metástase Neoplásica , Resultado do Tratamento , Fatores de Risco
7.
Adv Sci (Weinh) ; 11(21): e2400676, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460179

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with a highly immunosuppressive tumor microenvironment and a typical pattern of disturbances in hepatic lipid metabolism. Long non-coding RNAs are shown to play an important role in the regulation of gene expression, but much remains unknown between tumor microenvironment and lipid metabolism as a bridging molecule. Here, long intergenic nonprotein coding RNA 01116 (LINC01116) acts as this molecular which is frequently upregulated in HCC patients and associated with HCC progression in vitro and in vivo is identified. Mechanistically, LINC01116 stabilizes EWS RNA-binding protein 1 (EWSR1) by preventing RAD18 E3 Ubiquitin Protein Ligase (RAD18) -mediated ubiquitination. The enhanced EWSR1 protein upregulates peroxisome proliferator activated receptor alpha (PPARA) and fatty acid binding protein1 (FABP1) expression, a long-chain fatty acid (LCFA) transporter, and thus cancer cells outcompete T cells for LCFAs, especially linoleic acid, for seeding their own growth, leading to T cell malfunction and HCC malignant progression. In a preclinical animal model, the blockade of LINC01116 leads to enhanced efficacy of anti-PD1 treatment accompanied by increased cytotoxic T cell and decreased exhausted T cell infiltration. Collectively, LINC01116 is an immunometabolic lncRNA and the LINC01116-EWSR1-PPARA-FABP1 axis may be targetable for cancer immunotherapy.


Assuntos
Carcinoma Hepatocelular , Progressão da Doença , Ácido Linoleico , Neoplasias Hepáticas , RNA Longo não Codificante , Linfócitos T , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/imunologia , Humanos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Ácido Linoleico/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Modelos Animais de Doenças , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética
8.
J Adv Res ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402949

RESUMO

INTRODUCTION: Abnormal alternative splicing (AS) contributes to aggressive intrahepatic invasion and metastatic spread, leading to the high lethality of hepatocellular carcinoma (HCC). OBJECTIVES: This study aims to investigate the functional implications of UPF3B-S (a truncated oncogenic splice variant) in HCC metastasis. METHODS: Basescope assay was performed to analyze the expression of UPF3B-S mRNA in tissues and cells. RNA immunoprecipitation, and in vitro and in vivo models were used to explore the role of UPF3B-S and the underlying mechanisms. RESULTS: We show that splicing factor HnRNPR binds to the pre-mRNA of UPF3B via its RRM2 domain to generate an exon 8 exclusion truncated splice variant UPF3B-S. High expression of UPF3B-S is correlated with tumor metastasis and unfavorable overall survival in patients with HCC. The knockdown of UPF3B-S markedly suppresses the invasive and migratory capacities of HCC cells in vitro and in vivo. Mechanistically, UPF3B-S protein targets the 3'-UTR of CDH1 mRNA to enhance the degradation of CDH1 mRNA, which results in the downregulation of E-cadherin and the activation of epithelial-mesenchymal transition. Overexpression of UPF3B-S enhances the dephosphorylation of LATS1 and the nuclear accumulation of YAP1 to trigger the Hippo signaling pathway. CONCLUSION: Our findings suggest that HnRNPR-induced UPF3B-S promotes HCC invasion and metastasis by exhausting CDH1 mRNA and modulating YAP1-Hippo signaling. UPF3B-S could potentially serve as a promising biomarker for the clinical management of invasive HCC.

9.
Cancer Res ; 84(8): 1210-1220, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38315776

RESUMO

The tumor microenvironment (TME) represents a complex network in which tumor cells communicate not only with each other but also with stromal and immune cells. The intercellular interactions in the TME contribute to tumor initiation, progression, metastasis, and treatment outcome. Recent advances in spatial transcriptomics (ST) have revolutionized the molecular understanding of the TME at the spatial level. A comprehensive interactive analysis resource specifically designed for characterizing the spatial TME could facilitate further advances using ST. In this study, we collected 296 ST slides covering 19 cancer types and developed a computational pipeline to delineate the spatial structure along the malignant-boundary-nonmalignant axis. The pipeline identified differentially expressed genes and their functional enrichment, deconvoluted the cellular composition of the TME, reconstructed cell type-specific gene expression profiles at the sub-spot level, and performed cell-cell interaction analysis. Finally, the user-friendly database SpatialTME (http://www.spatialtme.yelab.site/) was constructed to provide search, visualization, and downloadable results. These detailed analyses are able to reveal the heterogeneous regulatory network of the spatial microenvironment and elucidate associations between spatial features and tumor development or response to therapy, offering a valuable resource to study the complex TME. SIGNIFICANCE: SpatialTME provides spatial structure, cellular composition, expression, function, and cell-cell interaction information to enable investigations into the tumor microenvironment at the spatial level to advance understanding of cancer development and treatment.


Assuntos
Perfilação da Expressão Gênica , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Expressão Gênica , Transformação Celular Neoplásica , Internet
10.
Int J Biol Sci ; 20(2): 718-732, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169579

RESUMO

As a crucial protumorigenic long noncoding RNA, colorectal tumor differential expression (CRNDE) has been confirmed to facilitate the progression of various cancers. However, its role in the tumor microenvironment (TME) of hepatocellular carcinoma (HCC) is still unclear. Here we determined that CRNDE was upregulated in HCC samples and that CRNDE-positive cells were predominantly enriched in malignant tumor cells. In vivo functional assays revealed that CRNDE-induced tumor cells supported HCC progression, recruited abundant granulocyte myeloid-derived suppressor cells (G-MDSCs) and restricted the infiltration of T cells. In terms of mechanisms, CRNDE bound with Toll-like receptor 3 (TLR3) and activated NF-κB signaling to increase the secretion of c-x-c motif chemokine ligand 3 (CXCL3). CRNDE knockdown could significantly suppress the accumulation of G-MDSCs and enhance the infiltration of T cells in the TME of HCC in vivo. Taken together, our study reveals the CRNDE-NF-κB-CXCL3 axis plays a crucial role in driving the immunosuppressive niche to facilitate HCC progression by recruiting G-MDSCs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Microambiente Tumoral/genética
11.
Science ; 383(6679): eadf6493, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207030

RESUMO

Neutrophils are increasingly recognized as key players in the tumor immune response and are associated with poor clinical outcomes. Despite recent advances characterizing the diversity of neutrophil states in cancer, common trajectories and mechanisms governing the ontogeny and relationship between these neutrophil states remain undefined. Here, we demonstrate that immature and mature neutrophils that enter tumors undergo irreversible epigenetic, transcriptional, and proteomic modifications to converge into a distinct, terminally differentiated dcTRAIL-R1+ state. Reprogrammed dcTRAIL-R1+ neutrophils predominantly localize to a glycolytic and hypoxic niche at the tumor core and exert pro-angiogenic function that favors tumor growth. We found similar trajectories in neutrophils across multiple tumor types and in humans, suggesting that targeting this program may provide a means of enhancing certain cancer immunotherapies.


Assuntos
Reprogramação Celular , Neoplasias , Neovascularização Patológica , Neutrófilos , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neutrófilos/imunologia , Proteômica , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Epigênese Genética , Hipóxia , Transcrição Gênica
12.
Cancer Lett ; 584: 216620, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218456

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent and leading causes of cancer-related mortality worldwide. Long non-coding RNAs (lncRNAs) have been demonstrated to play vital roles in cancer development and progression. The lncRNA PWRN1 (PWRN1), acts as a tumor suppressor factor, which is low expressed in some cancers. However, the molecular mechanisms underlying the effects of PWRN1, especially the regulatory relationship with RNA binding protein in HCC remain largely unknown. In the present study, we demonstrated that PWRN1 was significantly down-regulated in HCC and correlated with better prognosis; furthermore, gain-of-function experiments showed that PWRN1 inhibited the proliferation of HCC cells. We further found that PWRN1 up-regulated pyruvate kinase activity and thus hinders the proliferation of HCC in vitro and in vivo. Mechanistically, pyruvate kinase M2 (PKM2) was bound to it and maintained the high activity state of PKM2, thereby hindering PKM2 from entering the nucleus in the form of low-activity dimers, reducing the expression of c-Myc downstream gene LDHA, leading to a decrease in lactate levels, and inhibiting the growth of tumor cells. In addition, PWRN1 was found to inhibit aerobic glycolysis. Finally, TEPP-46, a pyruvate kinase activator, appeared to inhibit HCC proliferation by maintaining tetramer stability and increasing pyruvate kinase activity. Taken together, our results provide new insights into the biology hindering HCC proliferation and indicate that PWRN1 in combination with PKM2 activators might represent a novel therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glicólise , Neoplasias Hepáticas/patologia , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , RNA Longo não Codificante/metabolismo
13.
Small ; 20(10): e2305131, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875640

RESUMO

Protein drugs hold promise in treating multiple complex diseases, including cancer. The priority of protein drug application is precise delivery of substantial bioactive protein into tumor site. Metal-organic-framework (MOF) is widely considered as a promising carrier to encapsulate protein drug owing to the noncovalent interaction between carrier and protein. However, limited loading efficiency and potential toxicity of metal ion in MOF restrict its application in clinical research. Herein, a tumor targeted collagenase-encapsulating MOF via protein-metal ion-organic ligand coordination (PMOCol ) for refining deep tissue pancreatic cancer photoimmunotherapy is developed. By an expedient method in which the ratio of metal ion, histidine residues of protein and ligand is precisely controlled, PMOCol is constructed with ultrahigh encapsulation efficiency (80.3 wt%) and can release collagenase with high enzymatic activity for tumor extracellular matrix (ECM) regulation after reaching tumor microenvironment (TME). Moreover, PMOcol exhibits intensively poorer toxicity than the zeolitic imidazolate framework-8 biomineralized protein. After treatment, the pancreatic tumor with abundant ECM shows enhanced immunocyte infiltration owing to extracellular matrix degradation that improves suppressive TME. By integrating hyperthermia agent with strong near-infrared absorption (1064 nm), PMOCol can induce acute immunogenicity to host immunity activation and systemic immune memory production to prevent tumor development and recurrence.


Assuntos
Estruturas Metalorgânicas , Neoplasias Pancreáticas , Humanos , Estruturas Metalorgânicas/química , Ligantes , Proteínas , Neoplasias Pancreáticas/terapia , Colagenases , Microambiente Tumoral
14.
Cell Death Dis ; 14(12): 854, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129382

RESUMO

Interferon (IFN) exerts its effects through interferon-stimulated genes (ISGs), but its efficacy is limited by interferon resistance, which can be caused by the ubiquitination of key proteins. UBE2O was initially identified as a promising therapeutic target based on data from the TCGA and iUUCD 2.0 databases. Through the inhibition of UBE2O, interferon α/ß signaling and overall interferon signaling were activated. Integrating data from proteomic, mass spectrometry, and survival analyses led to the identification of IFIT3, a mediator of interferon signaling, as a ubiquitination substrate of UBE2O. The results of in vitro and in vivo experiments demonstrated that the knockdown of UBE2O can enhance the efficacy of interferon-α by upregulating IFIT3 expression. K236 was identified as a ubiquitination site in IFIT3, and the results of rescue experiments confirmed that the effect of UBE2O on interferon-α sensitivity is dependent on IFIT3 activity. ATO treatment inhibited UBE2O and increased IFIT3 expression, thereby increasing the effectiveness of interferon-α. In conclusion, these findings suggest that UBE2O worsens the therapeutic effect of interferon-α by targeting IFIT3 for ubiquitination and degradation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Interferon-alfa/farmacologia , Proteômica , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Ubiquitinação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Enzimas de Conjugação de Ubiquitina
15.
Liver Cancer ; 12(5): 405-444, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37901768

RESUMO

Background: Primary liver cancer, of which around 75-85% is hepatocellular carcinoma in China, is the fourth most common malignancy and the second leading cause of tumor-related death, thereby posing a significant threat to the life and health of the Chinese people. Summary: Since the publication of Guidelines for Diagnosis and Treatment of Primary Liver Cancer in China in June 2017, which were updated by the National Health Commission in December 2019, additional high-quality evidence has emerged from researchers worldwide regarding the diagnosis, staging, and treatment of liver cancer, that requires the guidelines to be updated again. The new edition (2022 Edition) was written by more than 100 experts in the field of liver cancer in China, which not only reflects the real-world situation in China but also may reshape the nationwide diagnosis and treatment of liver cancer. Key Messages: The new guideline aims to encourage the implementation of evidence-based practice and improve the national average 5-year survival rate for patients with liver cancer, as proposed in the "Health China 2030 Blueprint."

16.
Clin Transl Med ; 13(9): e1418, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37752791

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Therapeutic options for advanced HCC are limited, which is due to a lack of full understanding of pathogenesis. Cellular senescence is a state of cell cycle arrest, which plays important roles in the pathogenesis of HCC. Mechanisms underlying hepatocellular senescence are not fully understood. LncRNA NEAT1 acts as an oncogene and contributes to the development of HCC. Whether NEAT1 modulates hepatocellular senescence in HCC is unknown. METHODS: The role of NEAT1 and KIF11 in cellular senescence and tumor growth in HCC was assessed both in vitro and in vivo. RNA pulldown, mass spectrometry, Chromatin immunoprecipitation (ChIP), luciferase reporter assays, RNA FISH and immunofluorescence (IF) staining were used to explore the detailed molecular mechanism of NEAT1 and KIF11 in cellular senescence of HCC. RESULTS: We found that NEAT1 was upregulated in tumor tissues and hepatoma cells, which negatively correlated with a senescence biomarker CDKN2A encoding p16INK4a and p14ARF proteins. NEAT1 was reduced in senescent hepatoma cells induced by doxorubicin (DOXO) or serum starvation. Furthermore, NEAT1 deficiency caused senescence in cultured hepatoma cells, and protected against the progression of HCC in a mouse model. During senescence, NEAT1 translocated into cytosol and interacted with a motor protein KIF11, resulting in KIF11 protein degradation and subsequent increased expression of CDKN2A in cultured hepatoma cells. Furthermore, KIF11 knockdown caused senescence in cultured hepatoma cells. Genetic deletion of Kif11 in hepatocytes inhibited the development of HCC in a mouse model. CONCLUSIONS: Conclusively, NEAT1 overexpression reduces senescence and promotes tumor progression in HCC tissues and hepatoma cells, whereas NEAT1 deficiency causes senescence and inhibits tumor progression in HCC. This is associated with KIF11-dependent repression of CDKN2A. These findings lay the foundation to develop potential therapies for HCC by inhibiting NEAT1 and KIF11 or inducing senescence.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Animais , Camundongos , Carcinoma Hepatocelular/genética , Linhagem Celular , Senescência Celular/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina , Modelos Animais de Doenças , Neoplasias Hepáticas/genética , RNA Longo não Codificante/genética
17.
Cell Metab ; 35(9): 1563-1579.e8, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543034

RESUMO

In response to adverse environmental conditions, embryonic development may reversibly cease, a process termed diapause. Recent reports connect this phenomenon with the non-genetic responses of tumors to chemotherapy, but the mechanisms involved are poorly understood. Here, we establish a multifarious role for SMC4 in the switching of colorectal cancer cells to a diapause-like state. SMC4 attenuation promotes the expression of three investment phase glycolysis enzymes increasing lactate production while also suppressing PGAM1. Resultant high lactate levels increase ABC transporter expression via histone lactylation, rendering tumor cells insensitive to chemotherapy. SMC4 acts as co-activator of PGAM1 transcription, and the coordinate loss of SMC4 and PGAM1 affects F-actin assembly, inducing cytokinesis failure and polyploidy, thereby inhibiting cell proliferation. These insights into the mechanisms underlying non-genetic chemotherapy resistance may have significant implications for the field, advancing our understanding of aerobic glycolysis functions in tumor and potentially informing future therapeutic strategies.


Assuntos
Neoplasias Colorretais , Diapausa , Humanos , Animais , Histonas/metabolismo , Glicólise , Proliferação de Células , Neoplasias Colorretais/metabolismo , Lactatos , Adenosina Trifosfatases/metabolismo , Proteínas Cromossômicas não Histona/metabolismo
18.
Exp Mol Med ; 55(9): 2051-2066, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653038

RESUMO

The identification of key regulatory factors that control osteoclastogenesis is important. Accumulating evidence indicates that circular RNAs (circRNAs) are discrete functional entities. However, the complexities of circRNA expression as well as the extent of their regulatory functions during osteoclastogenesis have yet to be revealed. Here, based on circular RNA sequencing data, we identified a circular RNA, circFam190a, as a critical regulator of osteoclast differentiation and function. During osteoclastogenesis, circFam190a is significantly upregulated. In vitro, circFam190a enhanced osteoclast formation and function. In vivo, overexpression of circFam190a induced significant bone loss, while knockdown of circFam190a prevented pathological bone loss in an ovariectomized (OVX) mouse osteoporosis model. Mechanistically, our data suggest that circFam90a enhances the binding of AKT1 and HSP90ß, promoting AKT1 stability. Altogether, our findings highlight the critical role of circFam190a as a positive regulator of osteoclastogenesis, and targeting circFam190a might be a promising therapeutic strategy for treating pathological bone loss.


Assuntos
Reabsorção Óssea , Osteoporose , RNA Circular , Animais , Camundongos , Reabsorção Óssea/metabolismo , Diferenciação Celular/genética , Osteoclastos/metabolismo , Osteogênese/genética , Osteoporose/metabolismo , Ligante RANK/metabolismo , RNA Circular/genética
19.
Liver Cancer ; 12(2): 116-128, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325495

RESUMO

Introduction: Current treatments for patients with previously treated advanced hepatocellular carcinoma (HCC) provide modest survival benefits. We evaluated the safety and antitumor activity of serplulimab, an anti-PD-1 antibody, plus the bevacizumab biosimilar HLX04 in this patient population. Methods: In this open-label, multicenter, phase 2 study in China, patients with advanced HCC who failed prior systemic therapy received serplulimab 3 mg/kg plus HLX04 5 mg/kg (group A) or 10 mg/kg (group B) intravenously every 2 weeks. The primary endpoint was safety. Results: As of April 8, 2021, 20 and 21 patients were enrolled into groups A and B, and they had received a median of 7 and 11 treatment cycles, respectively. Grade ≥3 treatment-emergent adverse events were reported by 14 (70.0%) patients in group A and 12 (57.1%) in group B. Most immune-related adverse events were grade ≤3. The objective response rate was 30.0% (95% confidence interval [CI], 11.9-54.3) in group A and 14.3% (95% CI, 3.0-36.3) in group B. Median duration of response was not reached (95% CI, 3.3-not evaluable [NE]) in group A and was 9.0 months (95% CI, 7.9-NE) in group B. Median progression-free survival was 2.2 months (95% CI, 1.4-5.5) and 4.1 months (95% CI, 1.5-NE), and median overall survival was 11.6 months (95% CI, 6.4-NE) and 14.3 months (95% CI, 8.2-NE) in groups A and B, respectively. Conclusion: Serplulimab plus HLX04 showed a manageable safety profile and promising antitumor activity in patients with previously treated advanced HCC.

20.
Adv Sci (Weinh) ; 10(22): e2206798, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37330650

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. Donafenib is a multi-receptor tyrosine kinase inhibitor approved for the treatment of patients with advanced HCC, but its clinical effect is very limited. Here, through integrated screening of a small-molecule inhibitor library and a druggable CRISPR library, that GSK-J4 is synthetically lethal with donafenib in liver cancer is shown. This synergistic lethality is validated in multiple HCC models, including xenograft, orthotopically induced HCC, patient-derived xenograft, and organoid models. Furthermore, co-treatment with donafenib and GSK-J4 resulted in cell death mainly via ferroptosis. Mechanistically, through integrated RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin with high throughput sequencing (ATAC-seq) analyses, that donafenib and GSK-J4 synergistically promoted the expression of HMOX1 and increased the intracellular Fe2+ level is found, eventually leading to ferroptosis. Additionally, through cleavage under targets & tagmentation followed by sequencing (CUT&Tag-seq), it is found that the enhancer regions upstream of HMOX1 promoter significantly increased under donafenib and GSK-J4 co-treatment. A chromosome conformation capture assay confirmed that the increased expression of HMOX1 is caused by the significantly enhanced interaction between the promoter and upstream enhancer under dual-drug combination. Taken together, this study elucidates a new synergistic lethal interaction in liver cancer.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Heme Oxigenase-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...