Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37112039

RESUMO

Shape memory polymers (SMPs) with intelligent deformability have shown great potential in the field of aerospace, and the research on their adaptability to space environments has far-reaching significance. Chemically cross-linked cyanate-based SMPs (SMCR) with excellent resistance to vacuum thermal cycling were obtained by adding polyethylene glycol (PEG) with linear polymer chains to the cyanate cross-linked network. The low reactivity of PEG overcame the shortcomings of high brittleness and poor deformability while endowing cyanate resin with excellent shape memory properties. The SMCR with a glass transition temperature of 205.8 °C exhibited good stability after vacuum thermal cycling. The SMCR maintained a stable morphology and chemical composition after repeated high-low temperature cycle treatments. The SMCR matrix was purified by vacuum thermal cycling, which resulted in an increase in its initial thermal decomposition temperature by 10-17 °C. The continuous vacuum high and low temperature relaxation of the vacuum thermal cycling increased the cross-linking degree of the SMCR, which improved the mechanical properties and thermodynamic properties of SMCR: the tensile strength of SMCR was increased by about 14.5%, the average elastic modulus was greater than 1.83 GPa, and the glass transition temperature increased by 5-10 °C. Furthermore, the shape memory properties of SMCR after vacuum thermal cycling treatment were well maintained due to the stable triazine ring formed by the cross-linking of cyanate resin. This revealed that our developed SMCR had good resistance to vacuum thermal cycling and thus may be a good candidate for aerospace engineering.

2.
Soft Robot ; 10(5): 1001-1014, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37074447

RESUMO

Soft robots equipped with multifunctionalities have been increasingly needed for secure, adaptive, and autonomous functioning in unknown and unpredictable environments. Robotic stacking is a promising solution to increase the functional diversity of soft robots, which are required for safe human-machine interactions and adapting in unstructured environments. However, most existing multifunctional soft robots have a limited number of functions or have not fully shown the superiority of the robotic stacking method. In this study, we present a novel robotic stacking strategy, Netting-Rolling-Splicing (NRS) stacking, based on a dimensional raising method via 2D-to-3D rolling-and-splicing of netted stackable pneumatic artificial muscles to quickly and efficiently fabricate multifunctional soft robots based on the same, simple, and cost-effective elements. To demonstrate it, we developed a TriUnit robot that can crawl 0.46 ± 0.022 body length per second (BL/s) and climb 0.11 BL/s, and can carry a 3 kg payload while climbing. Also, the TriUnit can be used to achieve novel omnidirectional pipe climbing including rotating climbing, and conduct bionic swallowing-and-regurgitating, multi-degree-of-freedom manipulation based on their multimodal combinations. Apart from these, steady rolling, with a speed of 0.19 BL/s, can be achieved by using a pentagon unit. Furthermore, we applied the TriUnit pipe climbing robot in panoramic shooting and cargo transferring to demonstrate the robot's adaptability for different tasks. The NRS stacking-driven soft robot here has demonstrated the best overall performance among existing stackable soft robots, representing a new and effective way for building multifunctional and multimodal soft robots in a cost-effective and efficient way.

3.
Adv Healthc Mater ; 12(16): e2201975, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36520058

RESUMO

As a kind of smart material, shape memory polymer (SMP) shows great application potential in the biomedical field. Compared with traditional metal-based medical devices, SMP-based devices have the following characteristics: 1) The adaptive ability allows the biomedical device to better match the surrounding tissue after being implanted into the body by minimally invasive implantation; 2) it has better biocompatibility and adjustable biodegradability; 3) mechanical properties can be regulated in a large range to better match with the surrounding tissue. 4D printing technology is a comprehensive technology based on smart materials and 3D printing, which has great application value in the biomedical field. 4D printing technology breaks through the technical bottleneck of personalized customization and provides a new opportunity for the further development of the biomedical field. This paper summarizes the application of SMP and 4D printing technology in the field of bone tissue scaffolds, tracheal scaffolds, and drug release, etc. Moreover, this paper analyzes the existing problems and prospects, hoping to provide a preliminary discussion and useful reference for the application of SMP in biomedical engineering.


Assuntos
Materiais Inteligentes , Alicerces Teciduais , Osso e Ossos , Impressão Tridimensional , Liberação Controlada de Fármacos
4.
Adv Healthc Mater ; 12(4): e2201999, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36337009

RESUMO

Percutaneous closure of ventricular septal defect (VSD) can effectively occlude abnormal blood flow between ventricles. However, commonly used Nitinol occlusion devices have non-negligible limitations, such as nondegradability leading to life-threatening embolization; limited device size predisposing to displacement and wear; only a few radiopaque markers resulting in inaccurate positioning. Nevertheless, the exploration of customized, biodegradable, and overall radiopaque occluders is still vacant. Here, overall radiopaque, biodegradable, and dynamic reconfigurable 4D printed VSD occluders are developed. Based on wavy bionic structures, various VSD occluders are designed and manufactured to adapt to the position diversity of VSD. The customized configuration, biocompatibility, and biodegradability of the developed 4D printed bionic occluders can eliminate the series of complications caused by traditional occluders. The overall radiopacity of 4D printed VSD occluders is validated ex vivo and in vivo, whereby accurate positioning can be assured. Notably, the preparation strategies for 4D printed occluders are scalable, eliminating the barriers to mass production, and marking a meaningful step in bridging the gap between modeling and clinical application of 4D printed occlusion devices. This work opens attractive perspectives for the rapid manufacturing of customized intelligent medical devices for which overall radiopacity, dynamic reconfigurability, biocompatibility, and biodegradability are sought.


Assuntos
Embolização Terapêutica , Comunicação Interventricular , Humanos , Biônica , Cateterismo Cardíaco , Comunicação Interventricular/terapia , Resultado do Tratamento , Impressão
5.
ACS Appl Mater Interfaces ; 14(41): 47198-47208, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36201852

RESUMO

Electroadhesion has shown the potential to deliver versatile handling devices because of its simplicity of actuation and rapid response. Current electroadhesion systems have, however, significant difficulties in adapting to external objects with complex shapes. Here, a novel concept of metasurface is proposed by combining the use of natural fibers (flax) and shape memory epoxy polymers in a hygromorphic and thermally actuated composite (HyTemC). The biobased material composite can be used to manipulate adhesive surfaces with high precision and controlled environmental actuation. The HyTemC concept is preprogrammed to store controllable moisture and autonomous desorption when exposed to the operational environment, and can reach predesigned bending curvatures up to 31.9 m-1 for concave and 29.6 m-1 for convex shapes. The actuated adhesive surface shapes are generated via the architected metasurface structure, incorporating an electroadhesive component integrated with the programmable biobased materials. This biobased metasurface stimulated by the external environment provides a large taxonomy of shapes─from flat, circular, single/double concave, and wavy, to piecewise, polynomial, trigonometric, and airfoil configurations. The objects handled by the biobased metasurface can be fragile because of the high conformal matching between contacting surfaces and the absence of compressive adhesion. These natural fiber-based and environmentally friendly electroadhesive metasurfaces can significantly improve the design of programmable object handling technologies, and also provide a sustainable route to lower the carbon and emission footprint of smart structures and robotics.

6.
Research (Wash D C) ; 2022: 9825656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909937

RESUMO

Stent placement is an effective palliation therapy for malignant colorectal obstruction. However, recurrent obstruction is a common severe complication caused by tumor ingrowth into the stent lumen. Conventional covered stents play a part in preventing the tumor from growing inward but at the expense of significantly increasing the risk of stent migration. Therefore, there is an urgent demand to develop stents with sustained antitumor and antimigration abilities. Herein, we propose a facile method for fabricating multifunctional bioinspired colorectal stents using 3D printing technology. Inspired by high-adhesion biological structures (gecko feet, tree frog toe pads, and octopus suckers) in nature, different types of bioinspired colorectal stents are designed to reduce migration. After functionalization with graphene oxide (GO), bioinspired colorectal stents show excellent and controllable photothermal performance, which is validated by effective ablation of colon cancer cells in vitro and tumors in vivo. Besides, the bioinspired colorectal stents demonstrate the feasibility of transanal placement and opening of the obstructed colon. More importantly, the facile manufacturing process of multifunctional bioinspired colorectal stents is appealing for mass production. Hence, the developed multifunctional bioinspired colorectal stents exhibit a highly promising potential in clinical applications.

7.
Acta Biomater ; 128: 100-119, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33964482

RESUMO

Transcatheter closure has been widely accepted as a highly effective way to treat abnormal blood flows and/or embolization of thrombus in the heart. It allows the closure of four types of congenital heart defects (CHDs) and stroke-associated left atrial appendage (LAA). The four types of CHDs include atrial septal defect (ASD), patent foramen ovale (PFO), patent ductus arteriosus (PDA), and ventricular septal defect (VSD). Advancements in the materials and configurations of occlusion devices have spurred the transition from open-heart surgery with high complexity and morbidity, or lifelong medication with a high risk of bleeding, to minimally invasive deployment. A variety of occlusion devices have been developed over the past few decades, particularly novel ones represented by biodegradable and 3D-printed occlusion devices, which are considered as next-generation alternatives to conventional Nitinol-based occlusion devices due to biodegradability, customization, and improved biocompatibility. The aim here is to comprehensively review the next-generation occlusion devices in terms of materials, configurations, manufacturing methods, deployment strategies, and (if available) experimental results or clinical data. The current challenges and the direction of future work are also proposed. STATEMENT OF SIGNIFICANCE: Implantation of occlusion devices has become a widely accepted and highly effective treatment for occluding abnormal blood/thrombus flow within the heart. Due to the serious complications such as erosion and displacement of conventional Nitinol-based occluders, next-generation occluders with reduced risk of complications and improved biocompatibility has emerged. Here, we comprehensively review the next-generation occluders developed for atrial septal defect (ASD), patent foramen ovale (PFO), patent ductus arteriosus (PDA), ventricular septal defect (VSD), and left atrial appendage (LAA), with special emphasis on biodegradable occluders. Besides, intelligent materials (e.g., automatically deployable shape memory polymers) and rapid customized manufacturing methods (3D/4D printing) for the fabrication of occluders are also introduced. Lastly, the directions of future work are highlighted.


Assuntos
Forame Oval Patente , Acidente Vascular Cerebral , Humanos , Impressão Tridimensional , Resultado do Tratamento
8.
ACS Appl Mater Interfaces ; 13(11): 12668-12678, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33397086

RESUMO

The significant mismatch of mechanical properties between the implanted medical device and biological tissue is prone to cause wear and even perforation. In addition, the limited biocompatibility and nondegradability of commercial Nitinol-based occlusion devices can easily lead to other serious complications, such as allergy and corrosion. The present study aims to develop a 4D printed patient-specific absorbable left atrial appendage occluder (LAAO) that can match the deformation of left atrial appendage (LAA) tissue to reduce complications. The desirable bioinspired network is explored by iterative optimization to mimic the stress-strain curve of LAA tissue and LAAOs are designed based on the optimal network. In vitro degradation tests are carried out to evaluate the effects of degradation on mechanical properties. In addition, 48 weeks of long-term subcutaneous implantation of the occluder shows favorable biocompatibility, and the 20-cycle compression test demonstrates outstanding durability of LAAO. Besides, a rapid, complete, and remote-controlled 4D transformation process of LAAO is achieved under the trigger of the magnetic field. The deployment of the LAAO in an isolated swine heart initially exhibits its feasibility for transcatheter LAA occlusion. To the best of our knowledge, this is the first demonstration of the 4D printed LAA occlusion device. It is worth noting that the bioinspired design concept is not only applicable to occlusion devices, but also to many other implantable medical devices, which is conducive to reducing complications, and a broad range of appealing application prospects can be foreseen.


Assuntos
Implantes Absorvíveis , Apêndice Atrial/cirurgia , Apêndice Atrial/patologia , Fenômenos Biomecânicos , Materiais Biomiméticos/química , Humanos , Teste de Materiais , Impressão Tridimensional , Estresse Mecânico , Resistência à Tração
9.
Adv Sci (Weinh) ; 7(18): 2000772, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32999834

RESUMO

Dynamic control of liquid wetting behavior on smart surfaces has attracted considerable concern owing to their important applications in directional motion, confined wetting and selective separation. Despite much progress in this regard, there still remains challenges in dynamic liquid droplet manipulation with fast response, no loss and anti-contamination. Herein, a strategy to achieve dynamic droplet manipulation and transportation on the electric field adaptive superhydrophobic elastomer surface is demonstrated. The superhydrophobic elastomer surface is fabricated by combining the micro/nanostructured clusters of hydrophobic TiO2 nanoparticles with the elastomer film, on which the micro/nanostructure can be dynamically and reversibly tuned by electric field due to the electric field adaptive deformation of elastomer film. Accordingly, fast and reversible transition of wetting state between Cassie state and Wenzel state and tunable adhesion on the surface via electric field induced morphology transformation can be obtained. Moreover, the motion states of the surface droplets can be controlled dynamically and precisely, such as jumping and pinning, catching and releasing, and controllable liquid transfer without loss and contamination. Thus this work would open the avenue for dynamic liquid manipulation and transportation, and gear up the broad application prospects in liquid transfer, selective separation, anti-fog, anti-ice, microfluidics devices, etc.

10.
Polymers (Basel) ; 12(2)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046369

RESUMO

Shape-memory polymers (SMPs) can adjust their stiffness, lock a temporary shape, and recover the permanent shape upon an appropriate stimulus. They are applied in the field of morphing skins. This work presents a variable-stiffness corrugated sheet based on a carbon fiber felt (CFF)-reinforced epoxy-based SMP composite that shows variable stiffness and extreme mechanical anisotropy for potential morphing skin applications. The corrugated sheet exhibits a variable stiffness with a change in temperature, which can help the skin adjust its stiffness according to different service environments. The corrugated sheet can be electrically heated rapidly and homogeneously due to its high electrical conductivity and enhanced heat transfer efficiency. Its Joule-heating effect acts as an effective active stimulation of the variable stiffness and shape-memory effect. The CFF-reinforced epoxy-based SMP composite was manufactured into a corrugated shape to obtain extreme mechanical anisotropy. The corrugated sheet shows a low in-plane stiffness to minimize the actuation energy, while it also possesses high out-of-plane stiffness to transfer the aerodynamic pressure load. Its mechanical properties, electrical heating performance, and shape-memory effect were investigated using experiments. The results show that the proposed SMP composite exhibits extreme mechanical anisotropy, considerable deformation ability, and variable stiffness induced by Joule heating without an external heater.

11.
Proc Math Phys Eng Sci ; 475(2229): 20190316, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31611728

RESUMO

When a dielectric elastomer (DE) balloon is subjected to electromechanical loading, instability may happen. In recent experiments, it has been shown that the instability configuration of a DE balloon under electromechanical loading can be very different from that only subjected to mechanical load. It has also been observed in the experiments that the electromechanical instability phenomena of a DE balloon can be highly time-dependent. In this article, we adopt a nonlinear viscoelastic model for the DE membrane to investigate the time-dependent electromechanical instability of a DE balloon. Using the model, we show that under a constant electromechanical loading, a DE balloon may gradually evolve from a convex shape to a non-convex shape with bulging out in the centre, and compressive hoop stress can also gradually develop the balloon, resulting in wrinkles as observed in the experiments. We have further shown that the snap-through instability phenomenon of the DE balloon also greatly depends on the ramping rate of the applied voltage.

12.
Mater Sci Eng C Mater Biol Appl ; 97: 864-883, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678978

RESUMO

As a kind of intelligent material, shape memory polymer (SMP) can respond to outside stimuli and possesses good properties including shape memory effect, deformability and biological compatibility, etc. SMPs have been introduced for medical applications such as tissue engineering, biological sutures, stents and bladder sensors. Due to the shape memory effect, the medical devices based on SMP can be implanted into body through minimally invasive surgery in contraction or folded state and recovered to their requisite original shapes at target position. In this paper, a review of SMPs utilized in biomedical applications and their actuation methods are listed. Various biomedical applications and potential applications based on the beneficial properties of SMP are also summarized.


Assuntos
Polímeros/química , Engenharia Tecidual , Materiais Biocompatíveis/química , Osso e Ossos/fisiologia , Portadores de Fármacos/química , Humanos , Próteses e Implantes , Regeneração , Stents
13.
Soft Robot ; 6(1): 69-81, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30335571

RESUMO

Soft robotics is an emerging area that attracts more and more attention. The intrinsic flexibility and compliance of soft materials and structures would endow novel functions with soft robots. Dielectric elastomers could deform sustainably subjected to external electrical stimuli and become promising materials for soft robots due to the large actuation strain, low elastic modulus, fast response, and high energy density. This article focuses on the fabrication, applications, and design of the dielectric elastomer spring-roll bending actuators. The actuator with large electrically induced bending angle has been made and demonstrated the applications in flexible gripper and inchworm-inspired soft crawling robot. The basic performance of the gripper and the crawling robot has been characterized. Furthermore, a thermodynamic model has been established to investigate the deformation and failure of such actuators. Comparison between theoretical and test results shows that the model is suitable for the prediction of the performance of the actuator. Then the influence of some design parameters on the performance of the actuator has been analyzed and discussed based on the model. The results could provide guidance to the design and optimization of such actuators for different applications.

14.
ACS Appl Mater Interfaces ; 10(41): 35526-35532, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30248257

RESUMO

Conductive shape memory polymers as a class of functional materials play a significant role in sensors and actuators. A high conductivity and a high response speed are needed in practical applications. In this work, a conductive shape memory polylactic acid (PLA) microfiber membrane was synthesized by combining electrospinning with chemical vapor polymerization. The shape memory PLA was electrospun into microfibers with different diameters, and a conductive polypyrrole (PPy) coating was applied to the PLA microfiber membranes using vapor polymerization. The conductivity of the microfiber membrane was investigated as a function of different experimental parameters: FeCl3 concentration, PPy evaporation time, and PPy temperature. The maximum conductivity of the membrane prepared in a sub-zero environment is 0.5 S/cm, which can sustain a heat-generating electric current sufficient to trigger the electro-actuated behaviors of the membrane within 2 s at 30 V. Thermographic imaging was used to assess the uniformity of the temperature distribution during the shape recovery process. The low surface temperature is compatible with potential applications in many fields.

15.
ACS Appl Mater Interfaces ; 9(1): 876-883, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-27997104

RESUMO

Four-dimensional (4D) active shape-changing structures based on shape memory polymers (SMPs) and shape memory nanocomposites (SMNCs) are able to be controlled in both space and time and have attracted increasing attention worldwide. However, conventional processing approaches have restricted the design space of such smart structures. Herein, 4D active shape-changing architectures in custom-defined geometries exhibiting thermally and remotely actuated behaviors are achieved by direct-write printing of ultraviolet (UV) cross-linking poly(lactic acid)-based inks. The results reveal that, by the introduction of a UV cross-linking agent, the printed objects present excellent shape memory behavior, which enables three-dimensional (3D)-one-dimensional (1D)-3D, 3D-two-dimensional (2D)-3D, and 3D-3D-3D configuration transformations. More importantly, the addition of iron oxide successfully integrates 4D shape-changing objects with fast remotely actuated and magnetically guidable properties. This research realizes the printing of both SMPs and SMNCs, which present an effective strategy to design 4D active shape-changing architectures with multifunctional properties. This paves the way for the further development of 4D printing, soft robotics, flexible electronics, minimally invasive medicine, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA