Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Environ Res ; 252(Pt 4): 119076, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38710430

RESUMO

The large yield of anaerobic digestates and the suboptimal efficacy of nutrient slow-release severely limit its practical application. To address these issues, a new biochar based fertilizer (MAP@BRC) was developed using biogas residue biochar (BRC) to recover nitrogen and phosphorus from biogas slurry. The nutrient release patterns of MAP@BRC and mechanisms for enhancing soil fertility were studied, and it demonstrated excellent performance, with 59% total nitrogen and 50% total phosphorus nutrient release rates within 28 days. This was attributed to the coupling of the mechanism involving the dissolution of struvite skeletons and the release of biochar pores. Pot experiments showed that crop yield and water productivity were doubled in the MAP@BRC group compared with unfertilized planting. The application of MAP@BRC also improved soil nutrient levels, reduced soil acidification, increased microbial populations, and decreased soil heavy metal pollution risk. The key factors that contributed to the improvement in soil fertility by MAP@BRC were an increase in available nitrogen and the optimization of pH levels in the soil. Overall, MAP@BRC is a safe, slow-release fertilizer that exhibits biochar-fertilizer interactions and synergistic effects. This slow-release fertilizer was prepared by treating a phosphorus-rich biogas slurry with a nitrogen-rich biogas slurry, and it simultaneously addresses problems associated with livestock waste treatment and provides a promising strategy to promote zero-waste agriculture.

2.
Front Cardiovasc Med ; 11: 1347552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628317

RESUMO

Background: The cardioprotective effect of remote ischemia preconditioning in clinical studies is inconsistent with experimental results. Adaptation to high-altitude hypoxia has been reported to be cardioprotective in animal experiments. However, the clinical significance of the cardioprotective effect of high-altitude adaptation has not been demonstrated. Methods: A retrospective cohort study with propensity score matching was designed to compare the outcomes of cardiac surgery between highlanders and lowlanders in a tertiary teaching hospital. The data of adult cardiac surgical patients from January 2013 to December 2022, were collected for analysis. Patients with cardiopulmonary bypass and cardioplegia were divided into a low-altitude group (<1,500 m) and a high-altitude group (≥1,500 m) based on the altitude of their place of residence. Results: Of 3,020 patients, the majority (87.5%) permanently lived in low-altitude regions [495 (435, 688) m], and there were 379 patients (12.5%) in the high-altitude group [2,552 (1,862, 3,478) m]. The 377 highlander patients were matched with lowlander patients at a ratio of 1:1. The high-altitude group exhibited a 44.5% reduction in the incidence of major adverse cardiovascular events (MACEs) compared with the low-altitude group (6.6% vs. 11.9%, P = 0.017). The patients in the moderate high-altitude subgroup (2,500-3,500 m) had the lowest incidence (5.6%) of MACEs among the subgroups. The level of creatinine kinase muscle-brain isoenzymes on the first postoperative morning was lower in the high-altitude group than in the low-altitude group (66.5 [47.9, 89.0] U/L vs. 69.5 [49.3, 96.8] U/L, P = 0.003). Conclusions: High-altitude adaptation exhibits clinically significant cardioprotection in cardiac surgical patients.

3.
J Sep Sci ; 47(7): e2300763, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576331

RESUMO

Folic acid (FA) is easily photodegraded to yield 6-formylpterin and pterin-6-carboxylic acid, which can generate reactive oxygen species and result in the formation of oxidized guanine derivatives such as 8-hydroxy-2'-deoxyguanosine and 8-hydroxy-guanosine. In this study, we developed a simple, rapid, and sensitive liquid chromatography-tandem mass spectrometry strategy for the simultaneous determination of FA photolysis products and oxidized guanine derivatives in plasma samples. Chromatographic separation was performed on a Waters HSS T3 column (2.1 × 100 mm, 5.0 µm) with gradient elution at a flow rate of 0.25 mL/min. Plasma samples were first pretreated with 1% formic acid, followed by protein precipitation with methanol. The developed method showed good linear relationships between 1 and 2000 ng/mL (r2 > 0.99). The intra- and inter-day precisions ranged from 2.6% to 7.5% and from 2.5% to 6.5%, respectively. Recoveries of the analytes were between 75.4% and 112.4% with the relative standard deviation < 9.1%. Finally, the method was applied to quantify FA photolysis products and oxidized guanine derivatives in rats with light and non-light conditions.


Assuntos
Ácido Fólico , Espectrometria de Massas em Tandem , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Ratos Sprague-Dawley , Fotólise , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos
4.
Cell Death Differ ; 31(1): 106-118, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38012390

RESUMO

Osteoarthritis (OA) is one of the most common joint diseases, there are no effective disease-modifying drugs, and the pathological mechanisms of OA need further investigation. Here, we show that H3K36 methylations were decreased in senescent chondrocytes and age-related osteoarthritic cartilage. Prrx1-Cre inducible H3.3K36M transgenic mice showed articular cartilage destruction and osteophyte formation. Conditional knockout Nsd1Prrx1-Cre mice, but not Nsd2Prrx1-Cre or Setd2Prrx1-Cre mice, replicated the phenotype of K36M/+; Prrx1-Cre mice. Immunostaining results showed decreased anabolic and increased catabolic activities in Nsd1Prrx1-Cre mice, along with decreased chondrogenic differentiation. Transcriptome and ChIP-seq data revealed that Osr2 was a key factor affected by Nsd1. Intra-articular delivery of Osr2 adenovirus effectively improved the homeostasis of articular cartilage in Nsd1Prrx1-Cre mice. In human osteoarthritic cartilages, both mRNA and protein levels of NSD1 and OSR2 were decreased. Our results indicate that NSD1-induced H3K36 methylations and OSR2 expression play important roles in articular cartilage homeostasis and OA. Targeting H3K36 methylation and OSR2 would be a novel strategy for OA treatment.


Assuntos
Cartilagem Articular , Osteoartrite , Camundongos , Humanos , Animais , Condrócitos/metabolismo , Metiltransferases/metabolismo , Osteoartrite/patologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Camundongos Transgênicos , Homeostase , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
5.
Biosens Bioelectron ; 246: 115832, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38016198

RESUMO

Olfactory dysfunction (OD) is a highly prevalent symptom and an early sign of neurodegenerative diseases in humans. However, the roles of peripheral olfactory system in disease progression and the mechanisms behind neurodegeneration remain to be studied. Olfactory epithelium (OE) organoid is an ideal model to study pathophysiology in vitro, yet the reliance on 3D culture condition limits continual in situ monitoring of organoid development. Here, we combined impedance biosensors and live imaging for real-time spatiotemporal analysis of OE organoids morphological and physiological features during Alzheimer's disease (AD) progression. The impedance measurements showed that organoids generated from basal stem cells of APP/PS1 transgenic mice had lower proliferation rate than that from wild-type mice. In concert with the biosensor measurements, live imaging enabled to visualize the spatial and temporal dynamics of organoid morphology. Abnormal protein aggregation and accumulation, including amyloid plaques and neurofibrillary tangles, was found in AD organoids and increased as disease progressed. This multimodal in situ bioelectrical measurement and imaging provide a new platform for investigating onset mechanisms of OD, which would shed new light on early diagnosis and treatment of neurodegenerative disease.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Doenças Neurodegenerativas , Transtornos do Olfato , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Células-Tronco/metabolismo , Organoides/metabolismo , Transtornos do Olfato/metabolismo , Peptídeos beta-Amiloides/metabolismo
6.
Nanoscale ; 15(48): 19784-19791, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38050429

RESUMO

Research on Ni/NiO electrocatalysts has advanced significantly, but the main obstacles to their use and commercialization remain their relatively ordinary activity and stability. In this paper, a chelating structure based on the coordination of multidentate ligands and Ni(II) is proposed to limit the growth of Ni and Ni oxide grains. These features reduce the particle size of Ni/NiO, increase particle dispersion, and maintain the high activity and stability of the catalyst. Aspartic acid, as a polydentate ligand, could coordinate with Ni2+ to form structurally stable chelate rings. The latter can limit grain growth, but also coat the active core with thin carbon layers after calcination to further achieve the confinement and protection of nanoparticles. The hydrogen evolution overpotential of prepared nitrogen-doped graphitized carbon shells (Ni/NiO@NC) nanoparticles was 100 mV (vs. RHE) when the current density was 10 mA cm-2 in 1 M KOH. The hydrogen evolution overpotential increased by only 4 mV after 6000 continuous cyclic-voltammetry scans. Moreover, when coated on different conductive substrates, the overpotential of this catalyst dropped to 34.6 mV (vs. RHE) at a current density of 10 mV cm-2. The lowest overpotential of the composite was only 194.9 mV at a current density of 100 mA cm-2, which is comparable with that of noble metal-based electrocatalysts. This work provides a plausible method for designing high-performance electrocatalysts of small size.

8.
Cancer Sci ; 114(12): 4583-4595, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37752684

RESUMO

Amplification of amino acids synthesis is reported to promote tumorigenesis. The serine/glycine biosynthesis pathway is a reversible conversion of serine and glycine catalyzed by cytoplasmic serine hydroxymethyltransferase (SHMT)1 and mitochondrial SHMT2; however, the role of SHTM1 in renal cell carcinoma (RCC) is still unclear. We found that low SHMT1 expression is correlated with poor survival of RCC patients. The in vitro study showed that overexpression of SHMT1 suppressed RCC proliferation and migration. In the mouse tumor model, SHMT1 significantly retarded RCC tumor growth. Furthermore, by gene network analysis, we found several SHMT1-related genes, among which homeobox D8 (HOXD8) was identified as the SHMT1 regulator. Knockdown of HOXD8 decreased SHMT1 expression, resulting in faster RCC growth, and rescued the SHMT1 overexpression-induced cell migration defects. Additionally, ChIP assay found the binding site of HOXD8 to SHMT1 promoter was at the -456~-254 bp region. Taken together, SHMT1 functions as a tumor suppressor in RCC. The transcription factor HOXD8 can promote SHMT1 expression and suppress RCC cell proliferation and migration, which provides new mechanisms of SHMT1 in RCC tumor growth and might be used as a potential therapeutic target candidate for clinical treatment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Humanos , Camundongos , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Glicina , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/metabolismo , Proteínas de Homeodomínio/genética , Neoplasias Renais/genética , Serina/metabolismo , Fatores de Transcrição
9.
Plant Physiol ; 193(4): 2806-2824, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37706535

RESUMO

Pathogens compromise host defense responses by strategically secreting effector proteins. However, the molecular mechanisms by which effectors manipulate disease-resistance factors to evade host surveillance remain poorly understood. In this study, we characterized a Puccinia striiformis f. sp. tritici (Pst) effector Pst21674 with a signal peptide. Pst21674 was significantly upregulated during Pst infections in wheat (Triticum aestivum L.) and knocking down Pst21674 by host-induced gene silencing led to reduced Pst pathogenicity and restricted hyphal spread in wheat. Pst21674 interaction with the abscisic acid-, stress-, and ripening-induced protein TaASR3 was validated mainly in the nucleus. Size exclusion chromatography, bimolecular fluorescence complementation, and luciferase complementation imaging assays confirmed that TaASR3 could form a functional tetramer. Virus-induced gene silencing and overexpression demonstrated that TaASR3 contributes to wheat resistance to stripe rust by promoting accumulation of reactive oxygen species and cell death. Additionally, transcriptome analysis revealed that the expression of defense-related genes was regulated in transgenic wheat plants overexpressing TaASR3. Interaction between Pst21674 and TaASR3 interfered with the polymerization of TaASR3 and suppressed TaASR3-mediated transcriptional activation of defense-related genes. These results indicate that Pst21674 serves as an important virulence factor secreted into the host nucleus to impede wheat resistance to Pst, possibly by targeting and preventing polymerization of TaASR3.


Assuntos
Basidiomycota , Triticum , Triticum/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Basidiomycota/fisiologia , Inativação Gênica , Virulência/genética , Doenças das Plantas/genética
10.
Analyst ; 148(20): 5124-5132, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37681669

RESUMO

Targeted imaging is playing an increasingly important role in the early detection and precise diagnosis of cancer. This need has motivated research into sensory nanomaterials that can be constructed into imaging agents to serve as biosensors. Graphene quantum dots (GQDs) as a valuable nanoprobe show great potential for use in two-photon biological imaging. However, most as-prepared GQDs exhibit a low two-photon absorption cross-section, narrow spectral coverage, and "one-to-one" signal conversion mode, which greatly hamper their wide application in sensitive early-stage cancer detection. Herein, a versatile strategy has been employed to fabricate an aptamer Sgc8c-functionalized hybrid as a proof-of-concept of the signal amplification strategy for targeted cancer imaging. In this study, GQDs with two-photon imaging performance, and silica nanoparticles (SiO2 NPs) as nanocarriers to provide amplified recognition events by high loading of GQD signal tags, were adopted to construct a two-photon hybrid-based signal amplification strategy. Thus, the obtained hybrid (denoted SiO2@GQDs) enabled extremely strong fluorescence with a quantum yield up to 0.49, excellent photostability and biocompatibility, and enhanced bright two-photon fluorescence up to 2.7 times that of bare GQDs (excitation at 760 nm; emission at 512 nm). Moreover, further modification with aptamer Sgc8c showed little disruption to the structure of the SiO2@GQDs-hybrid and the corresponding two-photon emission. Hence, SiO2@GQDs-Sgc8c showed specific responses to target cells. Moreover, it could be used as a signal-amplifying two-photon nanoprobe for targeted cancer imaging with high specificity and great efficiency, which exhibits a distinct green fluorescence compared to that of GQDs-Sgc8c or SiO2@GQDs. This signal amplification strategy holds great potential for the accurate early diagnosis of tumors and offers new tools for the detection a wide variety of analytes in clinical application.


Assuntos
Grafite , Nanopartículas , Neoplasias , Pontos Quânticos , Humanos , Pontos Quânticos/química , Grafite/química , Dióxido de Silício/química , Nanopartículas/química , Oligonucleotídeos , Neoplasias/diagnóstico por imagem
11.
Int J Biol Macromol ; 240: 124422, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37068539

RESUMO

This experiment was designed to evaluate the influences of dietary dandelion polysaccharides (DP) on the performance and cecum microbiota of laying hens. Three hundred laying hens were assigned to five treatment groups: the basal diet group (CK group), three DP groups (basal diets supplemented with 0.5, 1.0, and 1.5 % DP), and the inulin group (IN group, basal diet supplemented with 1.5 % inulin). Increased daily egg weight and a decreased feed conversion rate were observed when the diets were supplemented with inulin or DP. The calcium metabolism rate in the 0.5 % and 1.0 % DP groups was greater than that in the CK group. The DP groups increased the short-chain fatty acid concentration, decreased pH, and enhanced the relative abundances of Parabacteroides, Alloprevotella, and Romboutsia in the cecum. These results showed that DP supplementation in the diets of laying hens can improve their performance, which might be associated with the regulation of the cecal microbiota.


Assuntos
Microbioma Gastrointestinal , Taraxacum , Animais , Feminino , Inulina/farmacologia , Galinhas , Dieta , Suplementos Nutricionais/análise , Ração Animal/análise
12.
Sci Rep ; 13(1): 4504, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934161

RESUMO

In this study, a powerful and rapid aqueous two-phase system (ATPS) method was used to extract polysaccharides from Codonopsis pilosula. The ATPS process was investigated with response surface methodology (RSM). At an ammonium sulfate concentration of 17%, ethanol concentration of 30%, and extraction temperature of 40 °C at pH 6, the total extraction yield of polysaccharides reached (31.57 ± 1.28)%. After separation and purification, a homogenized polysaccharide CPP 2-4 with molecular weight of 3.9 × 104 kDa was obtained from the bottom phase. The physicochemical properties and structural features confirmed that CPP 2-4 was an α-1,6-glucan. Activity studies showed that the IC50 of CPP 2-4 for DPPH radical scavenging was 0.105 mg/mL. The FRAP and ABTS assays showed that CPP 2-4 had strong antioxidant activity in a dose-dependent manner. Furthermore, CPP 2-4 inhibited NO release in RAW264.7 cells induced by lipopolysaccharide, which indicated a certain anti-inflammatory effect. This study improved the extraction rate of polysaccharides from C. pilosula and identified a glucan for the first time, that can contribute to a better understanding of the composition and structure of polysaccharides from C. pilosula and provide data support for the medicine and food homology of C. pilosula.


Assuntos
Codonopsis , Glucanos , Glucanos/farmacologia , Codonopsis/química , Polissacarídeos/química , Antioxidantes/química , Lipopolissacarídeos/farmacologia , Água/química
13.
Adv Sci (Weinh) ; 10(7): e2206101, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36638268

RESUMO

Thanks to the gustatory system, humans can experience the flavors in foods and drinks while avoiding the intake of some harmful substances. Although great advances in the fields of biotechnology, microfluidics, and nanotechnologies have been made in recent years, this astonishing recognition system can hardly be replaced by any artificial sensors designed so far. Here, taste organoids are coupled with an extracellular potential sensor array to form a novel bioelectronic organoid and developed a taste organoids-on-a-chip system (TOS) for highly mimicking the biological sense of taste ex vivo with high stability and repeatability. The taste organoids maintain key taste receptors expression after the third passage and high cell viability during 7 days of on-chip culture. Most importantly, the TOS not only distinguishs sour, sweet, bitter, and salt stimuli with great specificity, but also recognizes varying concentrations of the stimuli through an analytical method based on the extraction of signal features and principal component analysis. It is hoped that this bioelectronic tongue can facilitate studies in food quality controls, disease modelling, and drug screening.


Assuntos
Sistemas Microfisiológicos , Paladar , Humanos , Língua , Sobrevivência Celular , Avaliação Pré-Clínica de Medicamentos
14.
Biotechnol Lett ; 45(2): 199-207, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36504267

RESUMO

Reactive Oxygen Species (ROS) play an important role in oxidative stress and are related to the lipid accumulation in microalgae. Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase can oxidize O2 to O2- ultimately. However, the function of NADPH oxidase and its contribution to the production of the intracellular total ROS are still unclear. In this study, the function of NADPH oxidase in Chlorella pyrenoidosa (C. pyrenoidosa) was investigated by adding activators Ca2+ and NADPH and inhibitors EGTA, LaCl3, DPI and BAPTA of NADPH oxidase. The results show that the addition of activators of Ca2+ or NADPH significantly increased the intracellular concentrations of ROS molecules (H2O2, O2-, and OH·) in C. pyrenoidosa. Moreover, the intracellular ROS level was higher under the nitrogen-deficient and phosphorus-deficient conditions than in control condition, but the addition of the inhibitors (EGTA, LaCl3, DPI, and BAPTA) of NADPH oxidase significantly reduced the intracellular concentrations of H2O2, O2-, and OH·. The study shows that NADPH oxidase actively participated in the production of intracellular ROS in C. pyrenoidosa, demonstrating that NADPH oxidase was another important element in the production of intracellular ROS in addition to mitochondria, chloroplasts and lysozymes in microalgae.


Assuntos
Chlorella , Espécies Reativas de Oxigênio , Ácido Egtázico , Peróxido de Hidrogênio/farmacologia , NADP , NADPH Oxidases
15.
Biosens Bioelectron ; 223: 115034, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36574741

RESUMO

The ectopic co-expression of taste and olfactory receptors in cardiomyocytes provides not only possibilities for the construction of biomimetic gustatory and olfactory sensors but also promising novel therapeutic targets for tachycardia treatment. Here, bitter taste and olfactory receptors endogenously expressed in HL-1 cells were verified by RT-PCR and immunofluorescence staining. Then HL-1 cardiomyocyte-based integrated gustatory and olfactory sensing array coupling with the microelectrode array (MEA) was first constructed for drugs screening and evaluation for tachycardia treatment. The MEA sensor detected the extracellular field potentials and reflected the systolic-diastolic properties of cardiomyocytes in real time in a label-free and non-invasive way. The in vitro tachycardia model was constructed using isoproterenol as the stimulator. The proposed sensing array facilitated potential drug screening for tachycardia treatment, such as salicin, artemisinin, xanthotoxin, and azelaic acid which all activated specific receptors on HL-1 cells. IC50 values for four potential drugs were calculated to be 0.0036 µM, 309.8 µM, 14.68 µM, and 0.102 µM, respectively. Visualization analysis with heatmaps and PCA cluster showed that different taste and odorous drugs could be easily distinguished. The mean inter-class Euclidean distance between different bitter drugs was 1.681, which was smaller than the distance between bitter and odorous drugs of 2.764. And the inter-class distance was significantly higher than the mean intra-class Euclidean distance of 1.172. In summary, this study not only indicates a new path for constructing novel integrated gustatory and olfactory sensors but also provides a powerful tool for the quantitative evaluation of potential drugs for tachycardia treatment.


Assuntos
Técnicas Biossensoriais , Receptores Odorantes , Humanos , Miócitos Cardíacos , Avaliação Pré-Clínica de Medicamentos , Biomimética , Olfato , Paladar , Taquicardia
16.
Diabetes ; 72(1): 97-111, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256844

RESUMO

Studies of diabetic glomerular injury have raised the possibility of developing useful early biomarkers and therapeutic approaches for the treatment of type 2 diabetic nephropathy (T2DN). In this study, we found that FGF13 expression is induced in glomerular endothelial cells (GECs) during T2DN progression. Endothelial-specific deletion of Fgf13 potentially alleviates T2DN damage, while Fgf13 overexpression has the opposite effect. Mechanistically, Fgf13 deficiency results in improved mitochondrial homeostasis and endothelial barrier integrity in T2DN. Moreover, FGF13-sensitive alteration of Parkin safeguards mitochondrial homeostasis in endothelium of T2DN through promotion of mitophagy and inhibition of apoptosis. Additionally, it is confirmed that the beneficial effects of Fgf13 deficiency on T2DN are abolished by endothelial-specific double deletion of Fgf13 and Prkn. The effects of Fgf13 deficiency on mitophagy and apoptosis through Parkin-dependent regulation may be distinct and separable events under diabetic conditions. These data show that the bifunctional role of Fgf13 deficiency in promoting mitophagy and inhibiting apoptosis through Parkin can shape mitochondrial homeostasis regulation in GECs and T2DN progression. As a potential therapeutic target for prevention and control of T2DN, a mechanistic understanding of the biofunction of FGF13 may also be relevant to the pathogenesis of other FGF13- and Parkin-associated diseases.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Endotélio/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Homeostase/genética , Diabetes Mellitus/metabolismo
17.
Aging (Albany NY) ; 14(23): 9679-9698, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36462498

RESUMO

The most hostile form of urologic cancer, clear cell renal cell carcinoma (ccRCC), has a high fatality rate and poor prognosis due to tumor metastasis at initial presentation. The complex process driving ccRCC metastasis is still unknown, though. In this study, we demonstrate that Spindle and kinetochore-associated protein 1 (SKA1) expression is significantly upregulated in ccRCC tissues and associated with aggressive clinicopathologic characteristics. Functionally, SKA1 knockdown on ccRCC cells reduced cancer cell motility both in vivo and in vitro research. These bioactivities of SKA1 may be brought on by its specific interaction with scaffold attachment factor B, according to the proposed mechanism (SAFB), which could further depress the transcription of dual specificity phosphatase 6 (DUSP6). Our findings may provide a new way of researching SKA1-regulated tumor metastasis, and indicate that SKA1 is a prospective therapeutic target for renal carcinoma.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Proteínas de Ligação à Região de Interação com a Matriz , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Fosfatase 6 de Especificidade Dupla , Neoplasias Renais/genética , Neoplasias Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Movimento Celular/genética , Receptores de Estrogênio , Proteínas Associadas à Matriz Nuclear
18.
Nanomaterials (Basel) ; 12(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36432301

RESUMO

An ultrathin 2D Ti3C2/g-C3N4 MXene (2D-TC/CN) heterojunction was synthesized, using a facile self-assembly method; the perfect microscopic-morphology and the lattice structure presented in the sample with a 2 wt% content of Ti3C2 were observed by the field-emission scanning electron microscopy (SEM) and transmission electron microscope (TEM). The optimized sample (2-TC/CN) exhibited excellent performance in degrading the tetracycline (TC), and the degradation rate reached 93.93% in the conditions of 20 mg/L, 50 mL of tetracycline within 60 min. Except for the increased specific-surface area, investigated by UV-vis diffuse reflectance spectra (UV-vis DRS) and X-ray photoelectron microscopy (XPS) valence spectra, the significantly enhanced photocatalytic activity of the 2-TC/CN could also be ascribed to the formation of Ti-N bonds between Ti3C2 and g-C3N4 nanosheets, which reduced the width of the band gap through adjusting the position of the valence band, thus resulting in the broadened light-absorption. Furthermore, the facilitated electron transmission was also proved by time-resolved photoluminescence (TRPL) and electrochemical impedance spectroscopy (EIS), which is effective in improving the quantum efficiency of photo-generated electrons. In addition, the resulting radical-capture experiment suggested that superoxide radicals have the greatest influence on photodegradation performance, with the photodegradation rate of TC reducing from 93.16% to 32.08% after the capture of superoxide radicals, which can be attributed to the production of superoxide radicals only, by the 2-TC/CN composites with a high conduction-band value (-0.62 eV). These facilely designed 2D Ti3C2/g-C3N4 composites possess great application potential for the photodegradation of tetracycline and other antibiotics.

19.
Dalton Trans ; 51(44): 16937-16944, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36263770

RESUMO

Cu3MX4 (M = V, Nb, and Ta; X = S, Se, and Te) compounds have recently emerged as greatly promising solar energy conversion materials due to their tailorable band gaps, high optical absorption coefficients, environmentally benign nature and comparatively abundant elements. However, solution synthesis of Cu3NbSe4 nanocrystals as a photoactive material for investigating their optoelectronic properties has not yet been reported. Herein, we present a facile synthesis of cube-shaped Cu3NbSe4 nanocrystals with high crystallinity, high uniformity and monodispersity. Studies of the formation process disclose that the reaction temperature, time and surface ligand play significant roles in determining the crystalline phase, size and morphology evolution of the Cu3NbSe4 nanocrystals. Excitingly, a Cu3NbSe4-based photodetector exhibits a high Ilight/Idark ratio of 35, fast response speeds of 0.3/0.1 s for rise/fall times and excellent stability, indicating its robust potential for application in electronics and optoelectronics.

20.
Biosens Bioelectron ; 216: 114619, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35986984

RESUMO

Olfactory dysfunction is an early symptom of neurodegenerative disease. Amyloid-beta oligomers (AßOs), the pathologic protein of Alzheimer's disease (AD), have been confirmed to be firstly deposited in olfactory bulb (OB), causing smell to malfunction. However, the detailed mechanisms underlying pathogenic nature of AßOs-induced olfactory neuronal degeneration in AD are not completely realized. Here, an early-stage olfactory dysfunction pathological model of AD in vitro based on biomimetic OB neuronal network chip was established for dynamic multi-site detection of neuronal electrical activity and network connection. We found both spike firing and correlation of overall neuronal network change regularly displayed gradually active state and then rapidly decay state after AßOs induction. Moreover, MK-801 and memantine were administrated at early-stage to detect alteration of OB neurons simulating nasal administration for AD treatment, which showed an almost recovery through the intermittent firing pattern. Together, this neuronal network-on-chip has revealed synaptic impairment and network neurodegeneration of olfactory dysfunction in AD, providing potential mechanisms information for early-stage progressive olfactory amyloidogenic pathology.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Doenças Neurodegenerativas , Transtornos do Olfato , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomimética , Maleato de Dizocilpina/metabolismo , Humanos , Memantina/metabolismo , Neurônios/metabolismo , Transtornos do Olfato/etiologia , Transtornos do Olfato/metabolismo , Transtornos do Olfato/patologia , Bulbo Olfatório , Olfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...