Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(3): 74, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367071

RESUMO

The aim of this study was to determine the relationship between short-term exposure to ambient air pollution and the number of daily hospital admissions for genitourinary disorders in Lanzhou. Hospital admission data and air pollutants, including PM2.5, PM10, SO2, NO2, O38h and CO, were obtained from the period 2013 to 2020. A generalized additive model (GAM) combined with distribution lag nonlinear model (DLNM) based on quasi-Poisson distribution was used by the controlling for trends, weather, weekdays and holidays. Short-term exposure to PM2.5, NO2 and CO increased the risk of genitourinary disorder admissions with RR of 1.0096 (95% CI 1.0002-1.0190), 1.0255 (95% CI 1.0123-1.0389) and 1.0686 (95% CI 1.0083-1.1326), respectively. PM10, O38h and SO2 have no significant effect on genitourinary disorders. PM2.5 and NO2 are more strongly correlated in female and ≥ 65 years patients. CO is more strongly correlated in male and < 65 years patients. PM2.5, NO2 and CO are risk factors for genitourinary morbidity, and public health interventions should be strengthened to protect vulnerable populations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Masculino , Feminino , Dióxido de Nitrogênio , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , China/epidemiologia , Material Particulado/análise
2.
Geohealth ; 8(1): e2022GH000780, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38173697

RESUMO

Extensive evidence has shown that air pollution increases the risk of cardiovascular disease (CVD) admissions. We aimed to explore the short-term effect of air pollution on CVD admissions in Lanzhou residents and their lag effects. Meteorological data, air pollution data, and a total of 309,561 daily hospitalizations for CVD among urban residents in Lanzhou were collected from 2013 to 2020. Distributed lag non-linear model was used to analyze the relationship between air pollutants and CVD admissions, stratified by gender, age, and season. PM2.5, NO2, and CO have the strongest harmful effects at lag03, while SO2 at lag3. The relative risks of CVD admissions were 1.0013(95% CI: 1.0003, 1.0023), 1.0032(95% CI: 1.0008, 1.0056), and 1.0040(95% CI: 1.0024, 1.0057) when PM2.5, SO2, and NO2 concentrations were increased by 10 µg/m³, respectively. Each 1 mg/m3 increase in CO concentration was associated with a relative risk of cardiovascular hospitalization of risk was 1.0909(95% CI: 1.0367, 1.1479). We observed a relative risk of 0.9981(95% CI: 0.9972, 0.9991) for each 10 µg/m³ increase in O3 for CVD admissions at lag06. We found a significant lag effects of air pollutants on CVD admissions. NO2 and CO pose a greater risk of hospitalization for women, while PM2.5 and SO2 have a greater impact on men. PM2.5, NO2, and CO have a greater impact on CVD admissions in individuals aged <65 years, whereas SO2 affects those aged ≥65 years. Our research indicates a possible short-term impact of air pollution on CVD. Local public health and environmental policies should take these preliminary findings into account.

3.
J Urban Health ; 100(6): 1246-1257, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38010484

RESUMO

Coronary heart disease (CHD) is one of the most serious public health problems. However, few studies have focused on the effects of exposure to particulate matter and gaseous air pollutants on CHD. This study aimed to explore the relationship between air pollutants and the number of hospitalized patients with CHD in Lanzhou, and we collected daily data on the number of hospitalized patients with CHD, daily air pollutants, and meteorological factors from 2013 to 2020. A distributed lag nonlinear model (DLNM) combined with a quasi-Poisson regression model was applied to evaluate the relationship between air pollutants and the number of hospitalized patients with CHD. The results indicated that the hysteresis effect of all pollutants except O38h reached its maximum at lag3, and the relative risk of coronary heart disease admission was 1.0014 (95%CI: 1.0004, 1.0023), 1.0003 (95%CI: 1.0000, 1.0006), 1.0020 (95%CI: 1.0004, 1.0035), and 1.0053 (95%CI: 1.0026, 1.0080) when PM2.5, PM10, NO2, and SO2 concentrations were increased by 10 µg/m3, respectively. Each 1 mg/m3 increase in CO concentration was associated with a relative risk of coronary heart disease; hospitalization risk was 1.1076 (95%CI: 1.0530, 1.1650). We observed a relative risk of 0.9991 (95%CI: 0.9986, 0.9999) for each 10 µg/m3 increase in O38h for coronary heart disease admission at lag1. Women and elderly were more susceptible to the impact of air pollution, and the impact was greater during cold seasons. Our results indicate that air pollution increased the risk of hospitalization for CHD in a short term. The research findings can provide strategic insights into the impact of current and future air pollution on CHD.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença das Coronárias , Humanos , Feminino , Idoso , Fatores de Tempo , Poluição do Ar/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Hospitalização , Doença das Coronárias/epidemiologia , China/epidemiologia , Exposição Ambiental/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...