Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38774976

RESUMO

One-dimensional (1D) Zn-based heterostructures have attracted considerable interest in the field of photodetection because of their tunable properties, flexibility, and unique optoelectronic properties. However, designing 1D multi-component Zn-based heterostructures for advanced photodetectors is still a great challenge. Herein, comb-like 1D-1D ZnO-ZnSe heterostructures with ZnO and ZnSe nanowires (NWs) comprising the shaft and teeth of a comb are reported. The length of the ZnO NWs can be modulated in the range of 300-1200 nm. Microstructural characterizations confirm that the 1D heterostructure clearly shows the spatial distribution of individual components. The well-designed structure displays an extended broadband photoresponse and higher photosensitivity than pure ZnSe NWs. Furthermore, ZnSe NWs with an appropriate length of ZnO branches show increased photoresponses of 3835% and 798% compared to those of pure ZnSe NWs under green and red-light irradiation, respectively. In addition, the integrated flexible photodetector presents excellent folding endurance after 1000 bending tests. This well-designed structure has significant potential for other 1D-based semiconductors in optoelectronic applications.

2.
ACS Nano ; 18(16): 10776-10787, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38587200

RESUMO

The electronic properties of 2D materials are highly influenced by the molecular activity at their interfaces. A method was proposed to address this issue by employing passivation techniques using monolayer MoS2 field-effect transistors (FETs) while preserving high performance. Herein, we have used alkali metal fluorides as dielectric capping layers, including lithium fluoride (LiF), sodium fluoride (NaF), and potassium fluoride (KF) dielectric capping layers, to mitigate the environmental impact of oxygen and water exposure. Among them, the LiF dielectric capping layer significantly improved the transistor performance, specifically in terms of enhanced field effect mobility from 74 to 137 cm2/V·s, increased current density from 17 µA/µm to 32.13 µA/µm at a drain voltage of Vd of 1 V, and decreased subthreshold swing to 0.8 V/dec The results have been analytically verified by X-ray photoelectron spectroscopy (XPS) and Raman, and photoluminescence (PL) spectroscopy, and the demonstrated technique can be extended to other transition metal dichalcogenide (TMD)-based FETs, which can become a prospect for cutting-edge electronic applications. These findings highlight certain important trade-offs and provide insight into the significance of interface control and passivation material choice on the electrical stability, performance, and enhancement of the MoS2 FET.

3.
Small ; 20(17): e2307728, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263806

RESUMO

Herein, the structure of integrated M3D inverters are successfully demonstrated where a chemical vapor deposition (CVD) synthesized monolayer WSe2 p-type nanosheet FET is vertically integrated on top of CVD synthesized monolayer MoS2 n-type film FET arrays (2.5 × 2.5 cm) by semiconductor industry techniques, such as transfer, e-beam evaporation (EBV), and plasma etching processes. A low temperature (below 250 °C) is employed to protect the WSe2 and MoS2 channel materials from thermal decomposition during the whole fabrication process. The MoS2 NMOS and WSe2 PMOS device fabricated show an on/off current ratio exceeding 106 and the integrated M3D inverters indicate an average voltage gain of ≈9 at VDD = 2 V. In addition, the integrated M3D inverter demonstrates an ultra-low power consumption of 0.112 nW at a VDD of 1 V. Statistical analysis of the fabricated inverters devices shows their high reliability, rendering them suitable for large-area applications. The successful demonstration of M3D inverters based on large-scale 2D monolayer TMDs indicate their high potential for advancing the application of 2D TMDs in future integrated circuits.

4.
Discov Nano ; 18(1): 69, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37382740

RESUMO

The relatively low output performance of triboelectric nanogenerator (TENG), which faces a challenge in performance improvement, limits its practical applications. Here, a high-performance TENG consisting of a silicon carbide@silicon dioxide nanowhiskers/polydimethylsiloxane (SiC@SiO2/PDMS) nanocomposite film and a superhydrophobic aluminum (Al) plate as triboelectric layers is demonstrated. The 7 wt% SiC@SiO2/PDMS TENG presents a peak voltage of 200 V and a peak current of 30 µA, which are ~ 300 and ~ 500% over that of the PDMS TENG, owing to an increase in dielectric constant and a decrease in dielectric loss of the PDMS film because of electric insulated SiC@SiO2 nanowhiskers. Furthermore, a 10 µF capacitor can be charged up to 3 V within ~ 87 s, which can be continuously operated on the electronic watch for 14 s. The work provides an effective strategy for improving output performance of TENG by adding core-shell nanowhiskers to modulate the dielectric properties of organic materials.

5.
J Colloid Interface Sci ; 649: 435-444, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37354800

RESUMO

Herein, a soft-template strategy involving the cationic surfactants has been successfully applied to size-controlled synthesis of hierarchical porous Fe-N/C for the first time. Specifically, a small amount of Fe and cationic surfactants can be uniformly doped into the zinc-based zeolite imidazole framework (ZIF-8) crystal particles and the cationic surfactants play a critical role in the formation of hierarchically porous Fe-ZIF-8@surfactant precursors. When the Fe-ZIF-8@surfactant is subsequently pyrolyzed, atomically dispersed Fe-Nx coordination structures can be in-situ converted to Fe-N/C, while the cationic surfactants decompose to form a carbon matrix to encapsulate the active sites, thereby preventing the aggregation of nanoparticles to a certain extent. As a result, the combined Fe nanocrystals and atomically dispersed Fe-Nx in the graphitic carbon matrix generate a synergistic effect to boost the electrocatalytic behaviors with a more positive half-wave potential (0.92 V) for oxygen reduction reaction (ORR) and a lower overpotential (420 mV at 10 mA cm-2) for oxygen evolution reaction (OER). As a proof of concept, the Fe-N/C@TTAB based zinc-air batteries (ZABs) present an outstanding peak power density (107.9 mW cm-2) and a superior specific capacity (706.3 mAh g-1) with robust cycling stability over 900 cycles for 150 h, which are better than the commercial Pt/C + IrO2 based ZABs.

6.
Small ; 18(39): e2202792, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36038360

RESUMO

The portable power bank as an energy storage device has received tremendous attention while the limited capacity and periodical charging are critical issues. Here, a self-charging power system (SCPS) consisting of a 0.94(Bi0.5 Na0.5 )TiO3 -0.06Ba(Zr0.25 Ti0.75 )O3 /polyvinylidenefluoride (BNT-BZT/PVDF) composite film-based triboelectric nanogenerator (TENG) is designed as a wind energy harvester and an all-solid-state lithium-ion battery (ASSLIB) as the energy storage device. The optimized TENG can provide an output voltage of ≈400 V, a current of ≈45 µA, and a maximum power of ≈10.65 mW, respectively. The ASSLIB assembled by LiNiCoMnO2 as the cathode, NiCo2 S4 as the anode, and Li7 La3 Zr2 O12 as the solid electrolyte can maintain a discharge capacity of 51.3 µAh after 200 cycles with a Coulombic efficiency of 98.5%. Particularly, an ASSLIB can be easily charged up to 3.8 V in 58 min using the wind-driven TENG, which can continuously drive 12 parallel-connected white light-emitting diodes (LEDs) or a pH meter. This work demonstrates the development of low-cost, high-performance and high-safety SCPSs and their large-scale practical application in self-powered microelectronic devices.

7.
ACS Appl Mater Interfaces ; 14(17): 20257-20267, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35451814

RESUMO

Thermodynamically induced tensile stress in the perovskite film will lead to the formation of atomic vacancies, seriously destroying the photovoltaic efficiency stability of the perovskite solar cells (PSCs). Among them, cations and halide anions vacancies are unavoidable; these point vacancies are considered to be a major source of the ionic migration and perovskite degradation at the crystal boundary and surface of the perovskite films. Here, we use choline bromide to modify the perovskite film by occupying the atomic defects in the CsPbBr3 perovskite film. The results show that the zwitterion quaternary ammonium ions and bromide ions in choline bromide can simultaneously occupy the Cs+ cation and Br- anions vacancies in the perovskite film by the ionic bonding effect, for which the defect-state density on the surface of the perovskite film can be significantly reduced, leading to the effective enhancement of carrier lifetime. In addition, the residual stress at the crystal boundary can be effectively reduced by lowering the Young's modulus in the CsPbBr3 perovskite film. As a result, the optimized device achieves a photoelectric conversion efficiency (PCE) of 9.06% with an increase of 41.1% compared to the control device with a PCE of 6.42%. Most importantly, the newborn thermal stress due to thermal expansion during heat working conditions can be transferred from the polycrystalline perovskite to the carbon layer by the matched Young's modulus, thus resulting in improved stability perovskite film under environmental conditions. The work provides new insights for preparing high-quality perovskite films with low defect-state density and residual stress.

8.
Transbound Emerg Dis ; 69(5): e2122-e2131, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35366384

RESUMO

The ongoing enzootic circulation of the Middle East respiratory syndrome coronavirus (MERS-CoV) in the Middle East and North Africa is increasingly raising the concern about the possibility of its recombination with other human-adapted coronaviruses, particularly the pandemic SARS-CoV-2. We aim to provide an updated picture about ecological niches of MERS-CoV and associated socio-environmental drivers. Based on 356 confirmed MERS cases with animal contact reported to the WHO and 63 records of animal infections collected from the literature as of 30 May 2020, we assessed ecological niches of MERS-CoV using an ensemble model integrating three machine learning algorithms. With a high predictive accuracy (area under receiver operating characteristic curve = 91.66% in test data), the ensemble model estimated that ecologically suitable areas span over the Middle East, South Asia and the whole North Africa, much wider than the range of reported locally infected MERS cases and test-positive animal samples. Ecological suitability for MERS-CoV was significantly associated with high levels of bareland coverage (relative contribution = 30.06%), population density (7.28%), average temperature (6.48%) and camel density (6.20%). Future surveillance and intervention programs should target the high-risk populations and regions informed by updated quantitative analyses.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , COVID-19/epidemiologia , COVID-19/veterinária , Camelus , Humanos , Aprendizado de Máquina , SARS-CoV-2
9.
ACS Appl Mater Interfaces ; 14(6): 8282-8296, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35112830

RESUMO

Hierarchical, ultrathin, and porous NiMoO4@CoMoO4 on Co3O4 hollow bones were successfully designed and synthesized by a hydrothermal route from the Co-precursor, followed by a KOH (potassium hydroxide) activation process. The hydrothermally synthesized Co3O4 nanowires act as the scaffold for anchoring the NiMoO4@CoMoO4 units but also show more compatibility with NiMoO4, leading to high conductivity in the heterojunction. The intriguing morphological features endow the hierarchical Co3O4@NiMoO4@CoMoO4 better electrochemical performance where the capacity of the Co3O4@NiMoO4@CoMoO4 heterojunction being 272 mA·h·g-1 at 1 A·g-1 can be achieved with a superior retention of 84.5% over 1000 cycles. The enhanced utilization of single/few NiMoO4@CoMoO4 shell layers on the Co3O4 core make it easy to accept extra electrons, enhancing the adsorption of OH- at the shell surface, which contribute to the high capacity. In our work, an asymmetric supercapacitor utilizing the optimized Co3O4@NiMoO4@CoMoO4 activated carbon (AC) as electrode materials was assembled, namely, Co3O4@NiMoO4@CoMoO4//AC device, yielding a maximum high energy density of 53.9 W·h·kg-1 at 1000 W·kg-1. It can retain 25.92 W·h·kg-1 even at 8100 W·kg-1, revealing its potential and viability for applications. The good power densities are ascribed to the porous feature from the robust architecture with recreated abundant mesopores on the composite, which assure improved conductivity and enhanced diffusion of OH- and also the electron transport. The work demonstrated here holds great promise for synthesizing other heterojunction materials M3O4@MMoO4@MMoO4 (M = Fe, Ni, Sn, etc).

10.
Shanghai Kou Qiang Yi Xue ; 30(4): 429-434, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34693440

RESUMO

PURPOSE: To compare the efficacy of tongue appliance combined with chin-cup and facemask in the treatment of anterior crossbite, as well as the effects on the position of hyoid bone and airway, so as to provide reference for clinic. METHODS: Sixty cases with anterior crossbite were selected after treatment, using tongue appliance combined with chin-cup (n=30) and facemask (n=30). Cephalometric radiographs were taken before and after treatment, skeletal, dental, hyoid, and airway space measurements were analyzed with Winceph 9.0 and AutoCAD 2016. SPSS 21.0 software package was used for statistical analysis. RESULTS: Both appliances had a good effect on anterior crossbite. After treatment, SNA, ANS-PNS significantly increased(P<0.05), and SN-MP significantly increased(P<0.05). The upper anterior teeth showed a buccal inclination(P<0.01), the lower anterior teeth had a lingual inclination, and the overjet became normal(P<0.01). UL-E increased in both groups(P<0.05), PLA significantly increased in tongue appliance combined with chin-cup group(P<0.05). H-C3 decreased in both groups(P<0.05), while H-S, H-Ar increased(P<0.01), suggesting that the hyoid bone moved backward and downward. PNS-UPW increased in both groups(P<0.01), and U-MPW increased in facemask group(P<0.01). CONCLUSIONS: Facemask and tongue appliance combined with chin-cup can both promote the development of the maxilla, cause a clockwise rotation of the mandible, and effectively correct the anterior crossbite. Both methods can cause a backward and downward displacement of hyoid bone. Facemask can enlarge the width of nasopharynx and palatopharynx airway, while only the width of nasopharynx can be increased by tongue appliance combined with chin-cup.


Assuntos
Má Oclusão Classe III de Angle , Má Oclusão , Cefalometria , Queixo , Aparelhos de Tração Extrabucal , Humanos , Mandíbula , Máscaras , Maxila , Língua/diagnóstico por imagem
12.
Infect Dis Poverty ; 10(1): 66, 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33964965

RESUMO

BACKGROUND: The ongoing transmission of the Middle East respiratory syndrome coronavirus (MERS-CoV) in the Middle East and its expansion to other regions are raising concerns of a potential pandemic. An in-depth analysis about both population and molecular epidemiology of this pathogen is needed. METHODS: MERS cases reported globally as of June 2020 were collected mainly from World Health Organization official reports, supplemented by other reliable sources. Determinants for case fatality and spatial diffusion of MERS were assessed with Logistic regressions and Cox proportional hazard models, respectively. Phylogenetic and phylogeographic analyses were performed to examine the evolution and migration history of MERS-CoV. RESULTS: A total of 2562 confirmed MERS cases with 150 case clusters were reported with a case fatality rate of 32.7% (95% CI: 30.9‒34.6%). Saudi Arabia accounted for 83.6% of the cases. Age of ≥ 65 years old, underlying conditions and ≥ 5 days delay in diagnosis were independent risk factors for death. However, a history of animal contact was associated with a higher risk (adjusted OR = 2.97, 95% CI: 1.10-7.98) among female cases < 65 years but with a lower risk (adjusted OR = 0.31, 95% CI: 0.18-0.51) among male cases ≥ 65 years old. Diffusion of the disease was fastest from its origin in Saudi Arabia to the east, and was primarily driven by the transportation network. The most recent sub-clade C5.1 (since 2013) was associated with non-synonymous mutations and a higher mortality rate. Phylogeographic analyses pointed to Riyadh of Saudi Arabia and Abu Dhabi of the United Arab Emirates as the hubs for both local and international spread of MERS-CoV. CONCLUSIONS: MERS-CoV remains primarily locally transmitted in the Middle East, with opportunistic exportation to other continents and a potential of causing transmission clusters of human cases. Animal contact is associated with a higher risk of death, but the association differs by age and sex. Transportation network is the leading driver for the spatial diffusion of the disease. These findings how this pathogen spread are helpful for targeting public health surveillance and interventions to control endemics and to prevent a potential pandemic.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Adulto , Idoso , Animais , Evolução Molecular , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Epidemiologia Molecular , Mortalidade , Filogenia , Arábia Saudita/epidemiologia , Análise de Sobrevida , Zoonoses/epidemiologia , Zoonoses/virologia
13.
Nat Commun ; 12(1): 1075, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597544

RESUMO

Understanding ecological niches of major tick species and prevalent tick-borne pathogens is crucial for efficient surveillance and control of tick-borne diseases. Here we provide an up-to-date review on the spatial distributions of ticks and tick-borne pathogens in China. We map at the county level 124 tick species, 103 tick-borne agents, and human cases infected with 29 species (subspecies) of tick-borne pathogens that were reported in China during 1950-2018. Haemaphysalis longicornis is found to harbor the highest variety of tick-borne agents, followed by Ixodes persulcatus, Dermacentor nutalli and Rhipicephalus microplus. Using a machine learning algorithm, we assess ecoclimatic and socioenvironmental drivers for the distributions of 19 predominant vector ticks and two tick-borne pathogens associated with the highest disease burden. The model-predicted suitable habitats for the 19 tick species are 14‒476% larger in size than the geographic areas where these species were detected, indicating severe under-detection. Tick species harboring pathogens of imminent threats to public health should be prioritized for more active field surveillance.


Assuntos
Infestações por Carrapato/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Carrapatos/crescimento & desenvolvimento , Animais , China/epidemiologia , Análise por Conglomerados , Geografia , Incidência , Especificidade da Espécie , Infestações por Carrapato/parasitologia , Doenças Transmitidas por Carrapatos/parasitologia , Carrapatos/classificação , Carrapatos/fisiologia
14.
Lancet Infect Dis ; 21(5): 617-628, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33476567

RESUMO

BACKGROUND: Wuhan was the first epicentre of COVID-19 in the world, accounting for 80% of cases in China during the first wave. We aimed to assess household transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and risk factors associated with infectivity and susceptibility to infection in Wuhan. METHODS: This retrospective cohort study included the households of all laboratory-confirmed or clinically confirmed COVID-19 cases and laboratory-confirmed asymptomatic SARS-CoV-2 infections identified by the Wuhan Center for Disease Control and Prevention between Dec 2, 2019, and April 18, 2020. We defined households as groups of family members and close relatives who did not necessarily live at the same address and considered households that shared common contacts as epidemiologically linked. We used a statistical transmission model to estimate household secondary attack rates and to quantify risk factors associated with infectivity and susceptibility to infection, accounting for individual-level exposure history. We assessed how intervention policies affected the household reproductive number, defined as the mean number of household contacts a case can infect. FINDINGS: 27 101 households with 29 578 primary cases and 57 581 household contacts were identified. The secondary attack rate estimated with the transmission model was 15·6% (95% CI 15·2-16·0), assuming a mean incubation period of 5 days and a maximum infectious period of 22 days. Individuals aged 60 years or older were at a higher risk of infection with SARS-CoV-2 than all other age groups. Infants aged 0-1 years were significantly more likely to be infected than children aged 2-5 years (odds ratio [OR] 2·20, 95% CI 1·40-3·44) and children aged 6-12 years (1·53, 1·01-2·34). Given the same exposure time, children and adolescents younger than 20 years of age were more likely to infect others than were adults aged 60 years or older (1·58, 1·28-1·95). Asymptomatic individuals were much less likely to infect others than were symptomatic cases (0·21, 0·14-0·31). Symptomatic cases were more likely to infect others before symptom onset than after (1·42, 1·30-1·55). After mass isolation of cases, quarantine of household contacts, and restriction of movement policies were implemented, household reproductive numbers declined by 52% among primary cases (from 0·25 [95% CI 0·24-0·26] to 0·12 [0·10-0·13]) and by 63% among secondary cases (from 0·17 [0·16-0·18] to 0·063 [0·057-0·070]). INTERPRETATION: Within households, children and adolescents were less susceptible to SARS-CoV-2 infection but were more infectious than older individuals. Presymptomatic cases were more infectious and individuals with asymptomatic infection less infectious than symptomatic cases. These findings have implications for devising interventions for blocking household transmission of SARS-CoV-2, such as timely vaccination of eligible children once resources become available. FUNDING: National Natural Science Foundation of China, Fundamental Research Funds for the Central Universities, US National Institutes of Health, and US National Science Foundation.


Assuntos
COVID-19/transmissão , SARS-CoV-2 , Adolescente , Adulto , Fatores Etários , Idoso , COVID-19/etiologia , Criança , Pré-Escolar , China/epidemiologia , Suscetibilidade a Doenças , Características da Família , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Adulto Jovem
15.
Clin Infect Dis ; 73(11): e3851-e3858, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33068430

RESUMO

BACKGROUND: The growing epidemics of severe fever with thrombocytopenia syndrome (SFTS), an emerging tick-borne disease in East Asia, and its high case fatality rate have raised serious public health concerns. METHODS: Surveillance data on laboratory-confirmed SFTS cases in China were collected. The spatiotemporal dynamics and epidemiological features were explored. The socioeconomic and environmental drivers were identified for SFTS diffusion using survival analysis and for SFTS persistence using a two-stage generalized boosted regression tree model. RESULTS: During 2010‒2018, a total of 7721 laboratory-confirmed SFTS cases were reported in China, with an overall case fatality rate (CFR) of 10.5%. The average annual incidence increased >20 times and endemic areas expanded from 27 to 1574 townships, whereas the CFR declined from 19% to 10% during this period. Four geographical clusters-the Changbai Mountain area, the Jiaodong Peninsula, the Taishan Mountain area, and the Huaiyangshan Mountain area-were identified. Diffusion and persistence of the disease were both driven by elevation, high coverages of woods, crops, and shrubs, and the vicinity of habitats of migratory birds but had different meteorological drivers. Residents ≥60 years old in rural areas with crop fields and tea farms were at increased risk to SFTS. CONCLUSIONS: Surveillance of SFTS and intervention programs need to be targeted at areas ecologically suitability for vector ticks and in the vicinity of migratory birds to curb the growing epidemic.


Assuntos
Infecções por Bunyaviridae , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Trombocitopenia , Infecções por Bunyaviridae/epidemiologia , China/epidemiologia , Febre/epidemiologia , Humanos , Pessoa de Meia-Idade
16.
Euro Surveill ; 25(40)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33034281

RESUMO

BackgroundThe natural history of disease in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remained obscure during the early pandemic.AimOur objective was to estimate epidemiological parameters of coronavirus disease (COVID-19) and assess the relative infectivity of the incubation period.MethodsWe estimated the distributions of four epidemiological parameters of SARS-CoV-2 transmission using a large database of COVID-19 cases and potential transmission pairs of cases, and assessed their heterogeneity by demographics, epidemic phase and geographical region. We further calculated the time of peak infectivity and quantified the proportion of secondary infections during the incubation period.ResultsThe median incubation period was 7.2 (95% confidence interval (CI): 6.9‒7.5) days. The median serial and generation intervals were similar, 4.7 (95% CI: 4.2‒5.3) and 4.6 (95% CI: 4.2‒5.1) days, respectively. Paediatric cases < 18 years had a longer incubation period than adult age groups (p = 0.007). The median incubation period increased from 4.4 days before 25 January to 11.5 days after 31 January (p < 0.001), whereas the median serial (generation) interval contracted from 5.9 (4.8) days before 25 January to 3.4 (3.7) days after. The median time from symptom onset to discharge was also shortened from 18.3 before 22 January to 14.1 days after. Peak infectivity occurred 1 day before symptom onset on average, and the incubation period accounted for 70% of transmission.ConclusionThe high infectivity during the incubation period led to short generation and serial intervals, necessitating aggressive control measures such as early case finding and quarantine of close contacts.


Assuntos
Infecções por Coronavirus/transmissão , Coronavirus/patogenicidade , Período de Incubação de Doenças Infecciosas , Pneumonia Viral/transmissão , Adolescente , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus , COVID-19 , Criança , Pré-Escolar , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Estudos Epidemiológicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , SARS-CoV-2 , Adulto Jovem
17.
Nanoscale ; 12(38): 19644-19654, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32966500

RESUMO

In this study, we, for the first time, demonstrate a general solid-phase pyrolysis method to synthesize hybrid transition metal nanocrystal-embedded graphitic carbon nitride nanosheets, namely M-CNNs, as a highly efficient oxygen electrocatalyst for rechargeable Zn-air batteries (ZABs). The ratios between metallic acetylacetonates and the g-C3N4 precursor can be controlled where Fe-CNNs-0.7, Ni-CNNs-0.7 and Co-NNs-0.7 composites have been optimized to exhibit superior ORR/OER bifunctional electrocatalytic activities. Specifically, Co-CNNs-0.7 exhibited not only a comparable half-wave potential (0.803 V vs. RHE) to that of the commercial Pt/C catalyst (0.832 V) with a larger current density for the ORR but also a lower overpotential (440 mV) toward the OER compared with the commercial IrO2 catalyst (460 mV), revealing impressive application in rechargeable ZABs. As a result, ZABs using Co-CNNs-0.7 as the cathode exhibited an excellent peak power density of 85.3 mW cm-2 with a specific capacity of 675.7 mA h g-1 and remarkable cycling stability of 1000 cycles, outperforming the commercially available Pt/C + IrO2 catalysts. This study highlights the synergy from heterointerfaces in oxygen electrocatalysis, thus providing a promising approach for advanced metal-air cathode materials.

18.
medRxiv ; 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32511590

RESUMO

BACKGROUND: As of April 2, 2020, the global reported number of COVID-19 cases has crossed over 1 million with more than 55,000 deaths. The household transmissibility of SARS-CoV-2, the causative pathogen, remains elusive. METHODS: Based on a comprehensive contact-tracing dataset from Guangzhou, we estimated both the population-level effective reproductive number and individual-level secondary attack rate (SAR) in the household setting. We assessed age effects on transmissibility and the infectivity of COVID-19 cases during their incubation period. RESULTS: A total of 195 unrelated clusters with 212 primary cases, 137 nonprimary (secondary or tertiary) cases and 1938 uninfected close contacts were traced. We estimated the household SAR to be 13.8% (95% CI: 11.1-17.0%) if household contacts are defined as all close relatives and 19.3% (95% CI: 15.5-23.9%) if household contacts only include those at the same residential address as the cases, assuming a mean incubation period of 4 days and a maximum infectious period of 13 days. The odds of infection among children (<20 years old) was only 0.26 (95% CI: 0.13-0.54) times of that among the elderly (≥60 years old). There was no gender difference in the risk of infection. COVID-19 cases were at least as infectious during their incubation period as during their illness. On average, a COVID-19 case infected 0.48 (95% CI: 0.39-0.58) close contacts. Had isolation not been implemented, this number increases to 0.62 (95% CI: 0.51-0.75). The effective reproductive number in Guangzhou dropped from above 1 to below 0.5 in about 1 week. CONCLUSION: SARS-CoV-2 is more transmissible in households than SARS-CoV and MERS-CoV, and the elderly ≥60 years old are the most vulnerable to household transmission. Case finding and isolation alone may be inadequate to contain the pandemic and need to be used in conjunction with heightened restriction of human movement as implemented in Guangzhou.

19.
Lancet Infect Dis ; 20(10): 1141-1150, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32562601

RESUMO

BACKGROUND: As of June 8, 2020, the global reported number of COVID-19 cases had reached more than 7 million with over 400 000 deaths. The household transmissibility of the causative pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains unclear. We aimed to estimate the secondary attack rate of SARS-CoV-2 among household and non-household close contacts in Guangzhou, China, using a statistical transmission model. METHODS: In this retrospective cohort study, we used a comprehensive contact tracing dataset from the Guangzhou Center for Disease Control and Prevention to estimate the secondary attack rate of COVID-19 (defined as the probability that an infected individual will transmit the disease to a susceptible individual) among household and non-household contacts, using a statistical transmission model. We considered two alternative definitions of household contacts in the analysis: individuals who were either family members or close relatives, such as parents and parents-in-law, regardless of residential address, and individuals living at the same address regardless of relationship. We assessed the demographic determinants of transmissibility and the infectivity of COVID-19 cases during their incubation period. FINDINGS: Between Jan 7, 2020, and Feb 18, 2020, we traced 195 unrelated close contact groups (215 primary cases, 134 secondary or tertiary cases, and 1964 uninfected close contacts). By identifying households from these groups, assuming a mean incubation period of 5 days, a maximum infectious period of 13 days, and no case isolation, the estimated secondary attack rate among household contacts was 12·4% (95% CI 9·8-15·4) when household contacts were defined on the basis of close relatives and 17·1% (13·3-21·8) when household contacts were defined on the basis of residential address. Compared with the oldest age group (≥60 years), the risk of household infection was lower in the youngest age group (<20 years; odds ratio [OR] 0·23 [95% CI 0·11-0·46]) and among adults aged 20-59 years (OR 0·64 [95% CI 0·43-0·97]). Our results suggest greater infectivity during the incubation period than during the symptomatic period, although differences were not statistically significant (OR 0·61 [95% CI 0·27-1·38]). The estimated local reproductive number (R) based on observed contact frequencies of primary cases was 0·5 (95% CI 0·41-0·62) in Guangzhou. The projected local R, had there been no isolation of cases or quarantine of their contacts, was 0·6 (95% CI 0·49-0·74) when household was defined on the basis of close relatives. INTERPRETATION: SARS-CoV-2 is more transmissible in households than SARS-CoV and Middle East respiratory syndrome coronavirus. Older individuals (aged ≥60 years) are the most susceptible to household transmission of SARS-CoV-2. In addition to case finding and isolation, timely tracing and quarantine of close contacts should be implemented to prevent onward transmission during the viral incubation period. FUNDING: US National Institutes of Health, Science and Technology Plan Project of Guangzhou, Project for Key Medicine Discipline Construction of Guangzhou Municipality, Key Research and Development Program of China.


Assuntos
Busca de Comunicante , Infecções por Coronavirus/transmissão , Características da Família , Pneumonia Viral/transmissão , Adulto , Infecções Assintomáticas/epidemiologia , Número Básico de Reprodução , Betacoronavirus , COVID-19 , China/epidemiologia , Busca de Comunicante/estatística & dados numéricos , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Quarentena , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Adulto Jovem
20.
Lancet Reg Health West Pac ; 2: 100020, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34173597

RESUMO

BACKGROUND: Before effective vaccines become widely available, sufficient understanding of the impacts of climate, human movement and non-pharmaceutical interventions on the transmissibility of COVID-19 is needed but still lacking. METHODS: We collected by crowdsourcing a database of 11 003 COVID-19 cases from 305 cities outside Hubei Province from December 31, 2019 to April 27, 2020. We estimated the daily effective reproduction numbers (Rt ) of COVID-19 in 41 cities where the crowdsourced case data are comparable to the official surveillance data. The impacts of meteorological variables, human movement indices and nonpharmaceutical emergency responses on Rt were evaluated with generalized estimation equation models. FINDINGS: The median Rt was 0•46 (IQR: 0•37-0•87) in the northern cities, higher than 0•20 (IQR: 0•09-0•52) in the southern cities (p=0•004). A higher local transmissibility of COVID-19 was associated with a low temperature, a relative humidity near 70-75%, and higher intracity and intercity human movement. An increase in temperature from 0℃ to 20℃ would reduce Rt by 30% (95 CI 10-46%). A further increase to 30℃ would result in another 17% (95% CI 5-27%) reduction. An increase in relative humidity from 40% to 75% would raise the transmissibility by 47% (95% CI 9-97%), but a further increase to 90% would reduce the transmissibility by 12% (95% CI 4-19%). The decrease in intracity human movement as a part of the highest-level emergency response in China reduced the transmissibility by 36% (95% CI 27-44%), compared to 5% (95% CI 1-9%) for restricting intercity transport. Other nonpharmaceutical interventions further reduced Rt by 39% (95% CI 31-47%). INTERPRETATION: Climate can affect the transmission of COVID-19 where effective interventions are implemented. Restrictions on intracity human movement may be needed in places where other nonpharmaceutical interventions are unable to mitigate local transmission. FUNDING: China Mega-Project on Infectious Disease Prevention; U.S. National Institutes of Health and National Science Foundation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...