Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(28): 19795-19805, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38903669

RESUMO

Manganese-based lithium-ion sieves have become some of the promising adsorbents for extracting Li+ from brines. However, manganese dissolution loss (MDL) severely impairs the stability and cyclicity of ion sieves. A novel ozone eluent was first developed to extract Li+ from lithium manganese oxides, which decreased MDL decreased from 5.89% to 0.11%, and after ten regeneration cycles, the adsorption capacity retained 85.39% of the initial value, which was better than 55.15% when only hydrochloric acid (HCl) was used as the eluent. Based on these phenomena, the mechanism for the O3 lowering of MDL was investigated. First, the catalytic decomposition reaction of O3 competed with the disproportionation reaction, and the involvement of O3 inhibited the occurrence of the disproportionation reaction. Additionally, the presence of O3 and reactive oxygen species provided a preferential electron acceptor compared to Mn3+ during the migration of electrons from the bulk phase to the surface. In this study, MDL was greatly reduced with a very simple strategy, and the cycling stability of the adsorbent was improved.

2.
Cell Death Dis ; 15(6): 436, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902268

RESUMO

Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, necessitating the identification of novel therapeutic targets. Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is involved in biological processes critical to cancer progression, such as regulation of solute carrier transporter proteins and metabolic pathways, including mTORC1. However, the metabolic processes governed by LAPTM4B and its role in oncogenesis remain unknown. In this study, we conducted unbiased metabolomic screens to uncover the metabolic landscape regulated by LAPTM4B. We observed common metabolic changes in several knockout cell models suggesting of a role for LAPTM4B in suppressing ferroptosis. Through a series of cell-based assays and animal experiments, we demonstrate that LAPTM4B protects tumor cells from erastin-induced ferroptosis both in vitro and in vivo. Mechanistically, LAPTM4B suppresses ferroptosis by inhibiting NEDD4L/ZRANB1 mediated ubiquitination and subsequent proteasomal degradation of the cystine-glutamate antiporter SLC7A11. Furthermore, metabolomic profiling of cancer cells revealed that LAPTM4B knockout leads to a significant enrichment of ferroptosis and associated metabolic alterations. By integrating results from cellular assays, patient tissue samples, an animal model, and cancer databases, this study highlights the clinical relevance of the LAPTM4B-SLC7A11-ferroptosis signaling axis in NSCLC progression and identifies it as a potential target for the development of cancer therapeutics.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Complexo de Endopeptidases do Proteassoma , Ubiquitina , Ferroptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Camundongos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Linhagem Celular Tumoral , Ubiquitinação , Camundongos Nus , Proteólise/efeitos dos fármacos
3.
Front Pharmacol ; 15: 1303693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38738181

RESUMO

Traditional Chinese Medicine (TCM) has been used for thousands of years to treat human diseases. Recently, many databases have been devoted to studying TCM pharmacology. Most of these databases include information about the active ingredients of TCM herbs and their disease indications. These databases enable researchers to interrogate the mechanisms of action of TCM systematically. However, there is a need for comparative studies of these databases, as they are derived from various resources with different data processing methods. In this review, we provide a comprehensive analysis of the existing TCM databases. We found that the information complements each other by comparing herbs, ingredients, and herb-ingredient pairs in these databases. Therefore, data harmonization is vital to use all the available information fully. Moreover, different TCM databases may contain various annotation types for herbs or ingredients, notably for the chemical structure of ingredients, making it challenging to integrate data from them. We also highlight the latest TCM databases on symptoms or gene expressions, suggesting that using multi-omics data and advanced bioinformatics approaches may provide new insights for drug discovery in TCM. In summary, such a comparative study would help improve the understanding of data complexity that may ultimately motivate more efficient and more standardized strategies towards the digitalization of TCM.

4.
Environ Monit Assess ; 196(4): 390, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517576

RESUMO

Atmospheric aerosols affect surface ozone concentrations by influencing radiation, but the mechanism and dominant factors are unclear. Therefore, this paper analyses the changes in aerosol-radiative-surface ozone in China's arid and semi-arid regions with the help of the Atmospheric Radiative Transfer (SBDART) model. The results suggest that Aerosol Optical Depth (AOD) and coarse Particulate Matter (PM10) have the same trend, with high values in spring and winter and low values in summer and autumn. Surface ozone is high in spring and summer and low in autumn and winter. Surface ozone is higher in spring and summer and lower in autumn and winter. In winter, mainly secondary pollutants are dominated by high pollution levels. In the rest of the seasons, a mixture of dust, motor vehicle exhaust, and soot is dominated by low pollution levels. Surface ozone is positively correlated with fine particles and negatively correlated with coarse particles. Temperature is positively correlated with surface ozone in all seasons and negatively correlated with PM10 in summer, autumn, and winter. Precipitation negatively correlates with PM10 each season and surface ozone in winter and spring. Analysis of surface ozone and PM10 sources in the more polluted city of Hohhot based on the back-line trajectory model showed that airflow trajectories mainly transported surface ozone and PM10 pollution from northwestern Inner Mongolia and western Mongolia. During dusty solid weather, the decrease in radiation reaching the Earth's surface and the cooling effect of aerosols lead to lower temperatures, which slows down the rate of chemical reactions of precursors of surface ozone, resulting in lower ozone concentrations at the surface. This study can provide a theoretical reference for aerosol and surface ozone control in arid and semi-arid areas of China.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/análise , Ozônio/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Estações do Ano , China , Poeira/análise , Aerossóis/análise
5.
Environ Sci Pollut Res Int ; 31(17): 24881-24893, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460039

RESUMO

It is widely accepted that rare species are the first species to become extinct after human-induced disturbances. However, the functional importance of rare species still needs to be better understood, especially in alpine meadow communities with harsher habitats, where the extinction rate of rare species may be higher. This study established a 1.85 × 105 m2 permanent research sample plot on the eastern Tibetan Plateau. We investigated data from 162 plots at 6 different sampling scales in alpine meadows to determine the contribution of rare and common species to alpine meadow communities' structural and functional variability. The results showed that (1) Asteraceae (Compositae) was the dominant family in the surveyed localities. The trends of species diversity indices were the same, and all of them increased with the increase of sampling scale, and the plant community showed apparent scale effects. (2) The community construction of rare species at small scales with high occupancy transitioned from neutral processes to ecological niche processes, while the community construction of common species at different sampling scales was all dominated by ecological niche processes. (3) The trait values of rare species at different sampling scales were different from those of common species, and their distribution in FEs (functional entities) was also different, indicating that they contributed differently to the ecological functions of the communities. Rare species with lower abundance in the surveyed communities had a higher proportion of FEs, indicating that rare species had a more significant proportion of contribution to FEs. The functional redundancy (FR) of rare species was lower than that of common species, and the functional vulnerability (FV) was higher than that of common species. Therefore, the loss of rare species is more likely to cause the loss of community ecological functions, affecting the function and resilience of alpine meadow ecosystems.


Assuntos
Ecossistema , Pradaria , Humanos , Plantas , Tibet
6.
Angew Chem Int Ed Engl ; 63(7): e202318850, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38169147

RESUMO

Due to the demanding depolymerization conditions and limited catalytic efficiency, enhancing lignin valorization remains challenging. Therefore, lowering the bond dissociation energy (BDE) has emerged as a viable strategy for achieving mild yet highly effective cleavage of bonds. In this study, a photocatalytic semi-hydrogenation/reduction strategy utilizing CsPbBr3 quantum dots (CPB-QDs) and Hantzsch ester (HEH2 ) as a synergistic catalytic system was introduced to reduce the BDE of Cß -O-Ar, achieving effective cleavage of the Cß -O-Ar bond. This strategy offers a wide substrate scope encompassing various ß-O-4 model lignin dimers, preoxidized ß-O-4 polymers, and native oxidized lignin, resulting in the production of corresponding ketones and phenols. Notably, this approach attained a turnover frequency (TOF) that is 17 times higher than that of the reported Ir-catalytic system in the photocatalytic depolymerization of the lignin model dimers. It has been observed via meticulous experimentation that HEH2 can be activated by CPB-QDs via single electron transfer (SET), generating HEH2 ⋅+ as a hydrogen donor while also serving as a hole quencher. Moreover, HEH2 ⋅+ readily forms an active transition state with the substrates via hydrogen bonding. Subsequently, the proton-coupled electron transfer (PCET) from HEH2 ⋅+ to the carbonyl group of the substrate generates a Cα ⋅ intermediate.

7.
Huan Jing Ke Xue ; 44(9): 4809-4818, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699800

RESUMO

Based on OMI remote sensing satellite data, the temporal and spatial characteristics of tropospheric ozone (O3), nitrogen dioxide (NO2), and formaldehyde (HCHO) concentrations in East China from 2005 to 2021 were analyzed, and the backward trajectory (HYSPLIT) model was used to explore their sources. The results showed that ① during the 17 years, the tropospheric O3 concentration steadily increased, reached the maximum value in 2010, and then showed a fluctuating and undulating state. NO2 showed an increasing trend from 2005 to 2012 and slowly decreased from 2012 to 2021. The average HCHO concentration showed an increasing trend from 1.15×1016molec·cm-2 in 2005 to 1.8×1016 molec·cm-2 in 2021. ② In terms of spatial characteristics, the concentrations of the three pollutants generally showed a pattern of high concentration in the north and low concentration in the south, with a high concentration in the north, uncharacteristic concentration in the middle, and low concentration in the south. ③ The sensitivity of O3 was as follows:η<2.3 in spring, which belonged to the VOCs control area; η<4.2 in summer, showing that most areas were NOx-VOCs coordinated control areas and a few areas were VOCs control areas; η<4.2 in autumn, which was primarily controlled by VOCs, with a few of them being NOx-VOC synergistic control areas; and η<2.3 in winter, which was a VOCs-controlled area. VOCs were primarily controlled in Shandong Province. ④ Owing to the high concentration of O3 in Shandong Province from 2005 to 2021, Jinan, the capital city of Shandong Province in 2021, was selected for ozone source analysis. The O3 concentration increased in Jinan in 2021 owing to two aspects. First, the long-distance air transportation primarily originated from Lianyungang City in Jiangsu Province and Cangzhou City in Hebei Province. Second, the close air mass transport originated from the pollution of cities near Jinan and the economic zones of the Yellow Sea and Bohai Sea, and the aggregation analysis results corresponded with those of the potential source contribution factor algorithm (PSCF) and the weighted trajectory analysis (CWT).

8.
Environ Monit Assess ; 195(9): 1048, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589897

RESUMO

Air pollution is considered one of the greatest threats to human health. This study combines a land use regression (LUR) model with satellite measurements and a distributed-lagged non-linear model (DLNM). It aims to predict high-resolution ground-level concentrations of nitrogen dioxide (NO2) and particulate matter 2.5 (PM2.5) in the Yangtze River Delta (YRD) and reveal the mechanisms of influence between NO2 and PM2.5 and precursors and meteorological factors. Results showed that the annual average NO2 and PM2.5 in the YRD urban agglomeration 2019 were 39.5 µg/m3 and 37.5 µg/m3, respectively. The seasonal variation of NO2 and PM2.5 showed winter > spring > autumn > summer. There is a compelling and complex relationship between NO2 and PM2.5. Predictors indicate that latitude (Y), surface pressure (P), ozone (O3), carbon monoxide (CO), aerosol optical depth (AOD), residential, and rangeland have positive impacts on NO2 and PM2.5. In contrast, temperature (T), precipitation (PRE), and industrial trees hurt NO2 and PM2.5. DLNM model results show that NO2 and PM2.5 had significant associations with the included precursors and meteorological elements, with lagged and non-linear effects observed. Satellite data could help significantly increase the accuracy of LUR models; the R2 of tenfold cross-validation was enhanced by 0.18-0.22. In 2019, PM2.5 will be the dominant pollutant in the YRD, and NO2 showed a high value in the central and eastern parts of the YRD. High concentrations of NO2 and PM2.5 are present in 86% of the YRD, meaning that residents will have difficulty avoiding exposure to these two high pollution levels.


Assuntos
Poluentes Ambientais , Humanos , Dióxido de Nitrogênio , Rios , Monitoramento Ambiental , China , Material Particulado
9.
Environ Monit Assess ; 195(8): 932, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37432491

RESUMO

Afforestation can improve soil erosion in the ecologically fragile areas of the Loess Plateau; however, the amount of water and phosphorus fertilizer that can promote vegetation survival is unclear, which hinders the improvement of the local ecological environment and the waste of water and fertilizer. In this study, based on field surveys, water and fertilizer control tests on Robinia pseudoacacia L. seedlings in experimental fields, and fitting CO2 response curves to R. pseudoacacia seedlings using a Li-6400 portable photosynthesizer, we measured their leaf nutrient contents and calculated resource use efficiency. The results showed that (1) under the same moisture gradient, except for photosynthetic phosphorus utilization efficiency (PPUE), light use efficiency (LUE), water use efficiency (WUE), carbon utilization efficiency (CUE), and photosynthetic nitrogen use efficiency (PNUE) all increased with increasing phosphorus fertilizer application. Under the same phosphorus fertilizer gradient, WUE increased with decreasing water application, and LUE, CUE, PNUE, and PPUE all reached the maximum at 55-60% of field water holding capacity. (2) Net photosynthetic rate (Pn) of R. pseudoacacia seedlings increased with increasing intercellular carbon dioxide concentration (Ci), and as Ci continued to increase, the increase in Pn became slower, but no maximal electron transport rate (TPU) occurred. Under the same CO2 concentration, Pn reached a maximum at 55-60% of field water holding capacity and phosphorus fertilizer at 30 gPm-2·a-1. (3) Leaf maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), daily respiration (Rd), stomatal conductance (Gs), and mesophyll conductance (Gm) reached their maximum at 30 gPm-2·a-1 of phosphorus fertilizer. Vcmax, Jmax, and Rd reached their maximum at 55-60% of field water holding capacity; Gs and Gm reached their maximum at 75-80% of field water holding capacity. (4) The higher the soil phosphorus content, the lower the biochemical (lb), stomatal (ls), and mesophyll (lm). With the increase of soil moisture, lb and ls are higher, and lm is lower. (5) Structural equation modeling showed that water-phosphorus coupling had a less direct effect on Rd and a more direct impact on Gs and Gm. Relative photosynthetic limitation directly affected the photosynthetic rate, indicating that water and phosphorus affected the photosynthetic rate through relative plant limitation. It was concluded that the resource use efficiency and photosynthetic capacity reached the maximum when 55-60% of field water holding capacity was maintained, and phosphorus fertilization was at 30 gP m-2·a-1. Therefore, maintaining suitable soil moisture and phosphorus fertilizer levels in the semi-arid zone of the Loess Plateau can improve the photosynthetic capacity of R. pseudoacacia seedlings.


Assuntos
Robinia , Solo , Plântula , Dióxido de Carbono , Fertilizantes , Monitoramento Ambiental , China , Nitrogênio , Fósforo
10.
Sci Total Environ ; 898: 165445, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442474

RESUMO

The relationship between biodiversity and ecosystem multifunctionality (EMF) depends on changes in environmental disturbance. Plant and soil biological diversity can mediate EMF, but how these change in response to grazing disturbance remains unknown. Here we present an 8-year experiment on sheep grazing control in alpine grasslands in Gannan Tibetan Autonomous Prefecture, Gansu Province, China. Plant species richness, FRic (functional richness), PD (Faith's phylogenetic diversity), soil biological diversity (bacterial, fungal, and ciliate diversity), and multiple ecosystem functions were measured and calculated. The results showed that increasing grazing intensity caused a decrease in biodiversity and EMF and that biodiversity and ecosystem function differed significantly (P < 0.05) between grazing intensities. EMF was positively correlated with species richness, functional diversity, and soil bacterial diversity (P < 0.05), with 23.6 %, 10.8 %, and 12.1 % of EMF explained by changes in grazing intensity, respectively. The interaction terms of grazing intensity, plant species richness, and soil biological diversity were negatively correlated with EMF (P < 0.05). This shift in the relationship between plant or soil biological diversity and EMF occurs at a grazing intensity index of around 0.7, i.e., the impact of plant species richness on EMF is more significant when the grazing intensity index is below 0.67. The effect of soil biological diversity on EMF is more substantial when the grazing intensity index is above 0.86. Conclusion: High grazing intensity directly affects soil bulk density and pH and indirectly affects EMF by regulating plant species richness and soil biological diversity changes. Loss of plant and soil biological diversity can have extreme consequences under low and high grazing intensity disturbance conditions. Therefore, we must develop biodiversity conservation strategies for external disturbances to mitigate the effects of land use practices such as grazing disturbances.

11.
Vox Sang ; 118(8): 647-655, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37322810

RESUMO

BACKGROUND AND OBJECTIVES: Cryopreserved platelets (cPLTs) can be stored for years and are mainly used in military settings. However, the commonly used cryoprotectant dimethyl sulphoxide (DMSO) has toxic side effects when utilized in high quantities. We developed a novel method to aseptically remove DMSO from thawed cPLTs by dialysis. MATERIALS AND METHODS: One unit of platelets (N = 6) was mixed with 75 mL of 27% DMSO within 4 days after collection and stored at -80°C for 1 week. The platelet counts, platelet distribution width, mean platelet volume (MPV), platelet activity, platelet release, platelet aggregation, platelet metabolism indicators and platelet ultrastructural features (determined by electron microscopy) of the samples at the pre-freeze, post-thaw wash (post-TW) and 24 h post-thaw wash (24-PTW) stages were determined and compared. RESULTS: The DMSO clearance rate from the post-TW platelets was 95.56 ± 1.3%, and the platelet recovery rate after washing was 74.66 ± 6.34%. The total count, activity, release factors, aggregation and thrombolytic ability of the post-TW platelets were lower, whereas the MPV and apoptosis rates were higher compared with those of the pre-freeze platelets. The lactic acid, glucose and potassium ions released from the platelets during washing were filtered away by the dialyser, which significantly reduced their concentration. However, 24-PTW platelets were metabolically active, resulting in a decrease in pH and glucose content and an increase in lactic acid content. The level of potassium ions remained low after 24 h of storage and washing. The pre-freeze platelets maintained their normal disc shape and exhibited an open canalicular system (OCS) and a dense tubular system. The cPLTs appeared irregular after washing, with protruding pseudopodia and an extensive OCS, which increased the release of their contents. CONCLUSION: We developed a novel dialysis method to effectively remove DMSO from cPLTs under aseptic conditions and maintain platelet quality. The clinical efficacy of our method remains to be determined. However, the function of the platelets declined 24 h after washing, making them unsuitable for transfusion.


Assuntos
Plaquetas , Dimetil Sulfóxido , Humanos , Plaquetas/metabolismo , Preservação de Sangue/métodos , Diálise Renal , Criopreservação/métodos , Glucose/metabolismo , Ácido Láctico/metabolismo
12.
Oncogenesis ; 12(1): 25, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37147294

RESUMO

Osteosarcoma (OS) is a rare malignant bone tumor but is one leading cause of cancer mortality in childhood and adolescence. Cancer metastasis accounts for the primary reason for treatment failure in OS patients. The dynamic organization of the cytoskeleton is fundamental for cell motility, migration, and cancer metastasis. Lysosome Associated Protein Transmembrane 4B (LAPTM4B) is an oncogene participating in various biological progress central to cancer biogenesis. However, the potential roles of LAPTM4B in OS and the related mechanisms remain unknown. Here, we established the elevated LAPTM4B expression in OS, and it is essential in regulating stress fiber organization through RhoA-LIMK-cofilin signaling pathway. In terms of mechanism, our data revealed that LAPTM4B promotes RhoA protein stability by suppressing the ubiquitin-mediated proteasome degradation pathway. Moreover, our data show that miR-137, rather than gene copy number and methylation status, contributes to the upregulation of LAPTM4B in OS. We report that miR-137 is capable of regulating stress fiber arrangement, OS cell migration, and metastasis via targeting LAPTM4B. Combining results from cells, patients' tissue samples, the animal model, and cancer databases, this study further suggests that the miR-137-LAPTM4B axis represents a clinically relevant pathway in OS progression and a viable target for novel therapeutics.

13.
Environ Monit Assess ; 195(3): 433, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36856933

RESUMO

Microplastics (MPs) are ubiquitous in the aquatic environment and have received widespread attention worldwide as emerging pollutants. Urbanization and anthropogenic activities are the main sources of MPs in rivers; however, the MPs in plateau rivers with less human activities are not well understood. In this study, the pollution of MPs in the surface water and shore sediment of the Lhasa River from the Qinghai-Tibet Plateau was investigated, and a risk assessment was conducted. The abundance of MPs in the surface water and shore sediment of Lhasa River were 0.63 n/L and 0.37 n/g, respectively. MPs in surface water were mainly dominated by films (43.23%) and fibers (31.12%) in shape, transparent (54.25%) in color, and 0-0.5 mm (75.83%) in size, while MPs in the shore sediment were mainly fibers (43.69%) and fragments (36.53%), transparent (71.91%), and 0-0.5 mm (60.18%). PP and PE were the predominant polymer types, accounting for 44.55% and 30.79% respectively in the surface water and 32.51% and 36.01% respectively in the shore sediment. More notably, the polymer pollution index (H) of MPs in the Lhasa River was at hazard level III due to the high risk caused by PVC, but the pollution load index (PLI) was low at hazard level I. This study reveals that the remote river in the Qinghai-Tibet Plateau are polluted by MPs, and their potential risks to the vulnerable ecosystem deserve attention.


Assuntos
Microplásticos , Plásticos , Humanos , Tibet , Ecossistema , Rios , Monitoramento Ambiental , China , Medição de Risco , Polímeros , Água
14.
Microb Ecol ; 85(4): 1179-1189, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35355087

RESUMO

Core microbiota is shared microbial taxa within the same habitat, which is important for understanding the stable and consistent components of the complex microbial assembly. However, information on the microplastic core bacteria from the river ecosystems is poor. Here, we investigated the composition and function of microplastic core bacteria from the Three Gorges Reservoir area along the approximate 662 km of the Yangtze River via full-length 16S rRNA gene sequencing, compared with those in water, sediment, and soil. The results showed that the spatial turnover of bacterial communities in four habitats supported deterministic processes dominated by niche differentiation, which shaped their core bacteria. The composition and function of microplastic core bacteria were significantly different from those in the other three habitats. Rhodobacteraceae was the main component of microplastic core bacteria, while the main component of core bacteria in water, sediment, and soil were Burkholderiaceae (21.90%), Burkholderiaceae (5.01%), Nitrosomonadaceae (4.61%), respectively. Furthermore, microplastic core bacteria had stronger geographic limitations along the Yangtze River in the Three Gorges Reservoir area. Stronger geographic limitations shaped the rapid community turnover and a potentially more connected network for the microplastic core bacteria than water, sediment, and soil. More importantly, microplastic core bacteria had strong potential functions of drug resistance and could cause risks to ecosystems and human health. Microplastic core bacteria were mainly influenced by sediment core bacteria, although the bacteria colonizing on microplastics could be from all the contact environments and original sources. These findings provide important insights into the composition, function, and association of microplastic core bacteria with their surrounding environment.


Assuntos
Microbiota , Microplásticos , Humanos , Plásticos , RNA Ribossômico 16S/genética , Bactérias/genética , Solo , Água
15.
Environ Monit Assess ; 195(1): 169, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36451005

RESUMO

High-load carbonaceous and dust aerosols can significantly reduce direct radiation (DIRR), which would affect photosynthesis in terrestrial ecosystems, thereby further affecting the productivity of vegetation. Based on this, a variety of remote sensing data were used to study the spatiotemporal distributions and changing tendencies of the absorbing aerosols, CO, DIRR, and gross primary productivity (GPP) in China during 2005-2019; then, the relationships were analyzed between different types of absorbing aerosols and DIRR as well as GPP. The results showed that the annual mean absorbing aerosols index (AAI) in China during 2005-2019 was 0.39, with a slow growth rate of 0.02 year-1, and the emission of CO showed a decreasing trend with each passing year, especially in North China Plain and Sichuan Basin. Carbonaceous and dust aerosols were predominantly bounded by Hu line. The east of Hu line was the dominant area of carbonaceous aerosols, and the west of Hu line was the topographical region of dust aerosols. Near the Hu line was the dominant area of carbonaceous-dust aerosols. However, the Karamay-Urumqi-Hami area and Northeast China Plain were exceptional. During the vegetation growing season, different types of absorbing aerosols significantly negatively affected GPP. From a perspective of regional scale variation pattern, the negative effect of absorbing aerosols on vegetation productivity was the most significant in Northeast China; from the perspective of the effects of different vegetation types, the negative effect of absorbing aerosols on grasslands was greater than that of woodlands; from the perspective of the composition characteristics of aerosols, the negative effect of dust aerosols on GPP was greater than that of carbonaceous aerosols.


Assuntos
Ecossistema , Monitoramento Ambiental , Aerossóis , China , Poeira
16.
Ying Yong Sheng Tai Xue Bao ; 33(5): 1291-1299, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35730088

RESUMO

Relationship between plant community functional diversity and ecosystem multifunctionality (EMF) was a new area of ecological research in recent years. Previous studies had mostly focused on the relationship between plant community functional diversity and individual ecosystem function, and lack of understanding of the EMF. In this study, six functional indices of aboveground biomass, soil organic carbon, soil total nitrogen, soil total phosphorus, soil available nitrogen and soil available phosphorus of Gannan alpine meadow were selected to analyze the relationship between plant community functional diversity and EMF on the altitude gradient of Gannan alpine mea-dow by using Bartlett sphericity test and multi-threshold method. The results showed that there was significant altitudinal difference in plant community composition, with species richness and plant coverage at 3500 m were significantly higher than those at other altitudes. Single and multi-functional diversity decreased with the increases of altitude, with significant difference among altitudes. Redundancy analysis showed that single and multi-functional richness, functional evenness and Rao's quadratic entropy were significantly positively correlated with soil temperature, soil water content and soil bulk density, and significantly negatively correlated with soil pH and soil conductivity. In a large threshold range (6%-89%), functional diversity had a significant positive effect on EMF. Based on correlation analysis, optimal regression model and random forest model, it was found that multi-functional richness index had a significant positive relationship with EMF, and that multi-functional richness was also the main driving factor of EMF. Overall, functional richness had the most significant impact on the EMF of alpine meadow in the Qinghai-Tibet Plateau.


Assuntos
Altitude , Ecossistema , Carbono , China , Pradaria , Nitrogênio/análise , Fósforo , Plantas , Solo/química , Tibet
17.
Cancer Sci ; 113(6): 2022-2033, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35381120

RESUMO

Metastasis is the main cause of cancer patients' death despite tremendous efforts invested in developing the related molecular mechanisms. During cancer cell migration, cells undergo dynamic regulation of filopodia, focal adhesion, and endosome trafficking. Cdc42 is imperative for maintaining cell morphology and filopodia, regulating cell movement. Integrin beta1 activates on the endosome, the majority of which distributes itself on the plasma membrane, indicating that endocytic trafficking is essential for this activity. In cancers, high expression of lysosome-associated protein transmembrane 4B (LAPTM4B) is associated with poor prognosis. LAPTM4B-35 has been reported as displaying plasma membrane distribution and being associated with cancer cell migration. However, the detailed mechanism of its isoform-specific distribution and whether it relates to cell migration remain unknown. Here, we first report and quantify the filopodia localization of LAPTM4B-35: mechanically, that specific interaction with Cdc42 promoted its localization to the filopodia. Furthermore, our data show that LAPTM4B-35 stabilized filopodia and regulated integrin beta1 recycling via interaction and cotrafficking on the endosome. In our zebrafish xenograft model, LAPTM4B-35 stimulated the formation and dynamics of focal adhesion, further promoting cancer cell dissemination, whereas in skin cancer patients, LAPTM4B level correlated with poor prognosis. In short, this study establishes an insight into the mechanism of LAPTM4B-35 filopodia distribution, as well as into its biological effects and its clinical significance, providing a novel target for cancer therapeutics development.


Assuntos
Integrina beta1 , Neoplasias , Animais , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Adesões Focais/metabolismo , Humanos , Integrina beta1/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Proteínas Oncogênicas/metabolismo , Peixe-Zebra/metabolismo
18.
Huan Jing Ke Xue ; 43(3): 1256-1267, 2022 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-35258189

RESUMO

The purpose of this study was to explore the temporal and spatial distribution characteristics and potential sources of ozone (O3) in the Shandong Peninsula over a long period of time based on the analysis of the temporal and spatial changes in O3 concentration in Shandong Peninsula from 2005 to 2020. We used wavelet analysis, the entropy weight method, and correlation analysis to discuss O3 and its influencing factors and researched the potential sources of O3 in Shandong Peninsula. The results showed that:① in terms of the time pattern, the near-surface O3 in Shandong Peninsula showed a "triple peak" trend from 2005 to 2020, reaching the maximum value of[(40.48±7.64) µg·m-3] in 2010 and a minimum value of[(36.63±5.61) µg·m-3] in 2013. The season was expressed as:summer[(42.49±1.7) µg·m-3]>spring[(40.65±0.6) µg·m-3]>autumn[(36.47±0.7) µg·m-3]>winter[(36.46±0.3) µg·m-3]. ② In terms of the spatial pattern, the O3 concentration of Shandong Peninsula gradually increased with the increase in latitude from 2005 to 2020, showing the characteristics of high concentrations in the east and west and low in the middle region. During the 16-year evolution of the O3 concentration, there was a 1.5 a main oscillation period. ③The analysis of meteorological conditions revealed that O3 concentration was positively correlated with temperature, precipitation, relative humidity, and sunshine hours, whereas pressure and wind speed were negatively correlated. In the analysis of social factors, soot (dust) emissions were the most obvious factor affecting the third indicator, with a weight of 0.25. ④ Through simulating the trajectory of airflow from different regions (Ji'nan and Qingdao), it was found that the ocean airflow contributed 10.69% to Jinan and 48.94% to Qingdao. There was 64.04% of the long-distance air mass transmission path coming from the northwest, and 43.69% of the short-distance air mass transmission path was from the Bohai Sea and the Yellow Sea, followed by Shandong Province with 21.01%. ⑤ The analysis of potential sources of O3 showed that the potential sources of Ji'nan were mainly distributed in Jinzhou, Liaoning Province, northern Jiangsu Province, Hubei Province, and Anhui Province, with a WPSCF value >0.6, and Qingdao's WPSCF value of >0.6 was mainly distributed in the Yellow Sea area. The O3 contribution of Jining City, Linyi City, Xuzhou City, Huaibei City, and Lianyungang City was >40 µg·m-3. The area with >45 µg·m-3 in Qingdao was mainly in the Yellow Sea. Through the analysis of potential sources in the Shandong Peninsula, particular attention should be paid to the supply of industrial sources in the surrounding areas and the marine sources provided by marine air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Atenção , China , Monitoramento Ambiental , Ozônio/análise , Estações do Ano
19.
Front Cell Dev Biol ; 9: 723016, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485305

RESUMO

Despite several new therapeutic options, multiple myeloma (MM) patients experience multiple relapses and inevitably become refractory to treatment. Insights into drug resistance mechanisms may lead to the development of novel treatment strategies. The S100 family is comprised of 21 calcium binding protein members with 17 S100 genes located in the 1q21 region, which is commonly amplified in MM. Dysregulated expression of S100 family members is associated with tumor initiation, progression and inflammation. However, the relationship between the S100 family and MM pathogenesis and drug response is unknown. In this study, the roles of S100 members were systematically studied at the copy number, transcriptional and protein level with patients' survival and drug response. Copy number analysis revealed a predominant pattern of gains occurring in S100 genes clustering in the 1q21 locus. In general, gains of genes encoding S100 family members associated with worse patient survival. However, S100 gene copy number and S100 gene expression did not necessarily correlate, and high expression of S100A4 associated with poor patient survival. Furthermore, integrated analysis of S100 gene expression and ex vivo drug sensitivity data showed significant negative correlation between expression of S100 family members (S100A8, S100A9, and S100A12) and sensitivity to some drugs used in current MM treatment, including proteasome inhibitors (bortezomib, carfilzomib, and ixazomib) and histone deacetylase inhibitor panobinostat. Combined proteomic and pharmacological data exhibited significant negative association of S100 members (S100A4, S100A8, and S100A9) with proteasome inhibitors and panobinostat. Clinically, the higher expression of S100A4 and S100A10 were significantly linked to shorter progression free survival in patients receiving carfilzomib-based therapy. The results indicate an association and highlight the potential functional importance of S100 members on chromosome 1q21 in the development of MM and resistance to established myeloma drugs, including proteasome inhibitors.

20.
ACS Appl Mater Interfaces ; 13(32): 38040-38049, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34346206

RESUMO

Human platelets (PLTs) are vulnerable to unfavorable conditions, and their adequate supply is limited by strict transportation conditions. We report here that PLTs preserved under three-dimensional (3D) conditions using novel biomimetic nanofiber peptides showed reduced apoptosis compared with classical PLTs stored at 22 °C and facilitated the storage and transportation of PLTs. The mechanism of PLT 3D preservation involves the formation of cross-links and a 3D nanofibrous network by a self-assembled peptide scaffold material at physiological conditions after initiation by triggers in plasma. PLTs adhere to the surface of the nanofibrous network to facilitate the 3D distribution of PLTs. The 3D microstructure, rheological properties, and effect on the inflammatory response and hemolysis were evaluated. Compared to traditional PLTs stored at 22 °C, PLTs subjected to 3D preservation showed similar morphology, number, aggregation activity, and reduced apoptosis. The detection of the reactive oxygen species (ROS) levels demonstrated that both reduced intracellular and mitochondrial ROS levels were correlated with reduced apoptosis. This study reveals a new 3D preservation method for PLTs based on the use of novel biomimetic nanofiber peptides that presents an attractive opportunity for various biomedical applications.


Assuntos
Biomimética/métodos , Plaquetas/metabolismo , Preservação de Sangue/métodos , Nanofibras/química , Animais , Apoptose , Humanos , Camundongos Endogâmicos BALB C , Agregação Plaquetária , Transfusão de Plaquetas , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...