Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1355312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544821

RESUMO

Modeling and remodeling are essential processes in the development and refinement of maxillofacial bones. Dysregulated bone modeling during the developmental stage may lead to maxillofacial bone malformations and malocclusion. Bone remodeling under mechanical loading serves as the biological basis for orthodontic treatment. Although previous reviews have indicated the significance of microRNAs (miRNAs) in bone metabolism, their roles in orchestrating maxillofacial bone modeling and remodeling remain unclear. This review aims to discuss the mechanisms by which miRNAs regulate the morphogenesis and development of maxillofacial bones, as well as their implications for maxillofacial malformations and malocclusion. Moreover, miRNAs participating in maxillofacial bone remodeling and their impacts on cell mechanosensing are also summarized. Given the intricate interplay of cells and signaling pathways, exosomal miRNAs emerge as the orchestrators of the modeling and remodeling processes. The diagnostic and therapeutic potentials of miRNAs are also highlighted in this review for future clinical applications.

2.
Pharmacol Res ; 202: 107144, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484858

RESUMO

Fibrosis is a pathological process that affects multiple organs and is considered one of the major causes of morbidity and mortality in multiple diseases, resulting in an enormous disease burden. Current studies have focused on fibroblasts and myofibroblasts, which directly lead to imbalance in generation and degradation of extracellular matrix (ECM). In recent years, an increasing number of studies have focused on the role of epithelial cells in fibrosis. In some cases, epithelial cells are first exposed to external physicochemical stimuli that may directly drive collagen accumulation in the mesenchyme. In other cases, the source of stimulation is mainly immune cells and some cytokines, and epithelial cells are similarly altered in the process. In this review, we will focus on the multiple dynamic alterations involved in epithelial cells after injury and during fibrogenesis, discuss the association among them, and summarize some therapies targeting changed epithelial cells. Especially, epithelial mesenchymal transition (EMT) is the key central step, which is closely linked to other biological behaviors. Meanwhile, we think studies on disruption of epithelial barrier, epithelial cell death and altered basal stem cell populations and stemness in fibrosis are not appreciated. We believe that therapies targeted epithelial cells can prevent the progress of fibrosis, but not reverse it. The epithelial cell targeting therapies will provide a wonderful preventive and delaying action.


Assuntos
Células Epiteliais , Transição Epitelial-Mesenquimal , Humanos , Fibrose , Transição Epitelial-Mesenquimal/fisiologia , Miofibroblastos/metabolismo , Fibroblastos/patologia
3.
Front Bioeng Biotechnol ; 11: 1251583, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781532

RESUMO

Oral submucous fibrosis is a chronic, inflammatory and potentially malignant oral disease. Local delivery of triamcinolone to lesion site is a commonly used therapy. The existing methods for local drug delivery include topical administration and submucosal injection. However, in the wet and dynamic oral microenvironment, these methods have drawbacks such as limited drug delivery efficiency and injection pain. Therefore, it is urgently needed to develop an alternative local drug delivery system with high efficiency and painlessness. Inspired by the structure of band-aid, this study proposed a novel double-layered mucoadhesive microneedle patch for transmucosal drug delivery. The patch consisted of a mucoadhesive silk fibroin/tannic acid top-layer and a silk fibroin microneedle under-layer. When applying the annealing condition for the medium content of ß-sheets of silk fibroin, the microneedles in under-layer displayed both superior morphology and mechanical property. The mechanical strength of per needle (0.071N) was sufficient to penetrate the oral mucosa. Sequentially, the gelation efficiency of silk fibroin and tannic acid in top-layer was maximized as the weight ratio of tannic acid to silk fibroin reached 5:1. Moreover, in vitro results demonstrated the double-layered patch possessed undetectable cytotoxicity. The sustained release of triamcinolone was observed from the double-layered patch for at least 7 days. Furthermore, compared with other commercial buccal patches, the double-layered patch exhibited an enhanced wet adhesion strength of 37.74 kPa. In addition, ex vivo mucosal tissue penetration experiment confirmed that the double-layered patch could reach the lamina propria, ensuring effective drug delivery to the lesion site of oral submucous fibrosis. These results illustrate the promising potential of the drug-loaded mucoadhesive microneedle patch for the treatment of oral submucous fibrosis.

5.
Biomater Adv ; 152: 213503, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37331243

RESUMO

Zinc(Zn)-based materials have contributed greatly to the rapid advancements in tissue engineering. The qualities they possess that make them so beneficial include their excellent biodegradability, biocompatibility, anti-bacterial activity, among and several others. Biomedical materials that act as a foreign body, will inevitably cause host immune response when introduced to the human body. As the osteoimmunology develops, the immunomodulatory characteristics of biomaterials have become an appealing concept to improve implant-tissue interaction and tissue restoration. Recently, Zn-based materials have also displayed immunomodulatory functions, especially macrophage polarization states. It can promote the transformation of M1 macrophages into M2 macrophages to enhance the tissue regeneration and reconstruction. This review covers mainly Zn-based materials and their characteristics, including metallic Zn alloys and Zn ceramics. We highlight the current advancements in the type of immune responses, as well as the mechanisms, that are induced by Zn-based biomaterials, most importantly the regulation of innate immunity and the mechanism of promoting tissue regeneration. To this end, we discuss their applications in biomedicine, and conclude with an outlook on future research challenges.


Assuntos
Materiais Biocompatíveis , Zinco , Humanos , Zinco/farmacologia , Zinco/uso terapêutico , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Macrófagos , Imunidade Inata , Próteses e Implantes
6.
Biomater Sci ; 11(11): 3800-3812, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37042202

RESUMO

As nano medications have developed in the recent four decades, nano-delivery systems have been applied in treating various diseases and are especially common in cancer treatment. Nano-delivery systems could target cancer-associated cells, enhance the accuracy and efficacy of treatment, and reduce systemic side effects. Among the many drugs on nano-carriers, the load system of lipid-based nanoparticles has the brightest prospect due to the high level of biocompatibility, biodegradability, loading capability, and immunogenicity. Previous reviews have comprehensively introduced their effects and progress. However, most of them did not provide great attention to practical applications. This article will focus on different intake methods, which decide the biological process of drugs. This suggests that we can modify lipid-based nano-delivery systems according to how they are capable of prolonging the half-life span and magnifying therapy effects in treating cancer. Besides, we put forth the problems that should be further studied in the future and their probable solutions.


Assuntos
Nanopartículas , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Lipídeos
7.
Cancer Cell Int ; 23(1): 37, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841765

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) remains an unmet medical challenge. Metabolic reprogramming is a hallmark of diverse cancers, including HNSCC. METHODS: We investigated the metabolic profile in HNSCC by using The Cancer Genome Atlas (TCGA) (n = 481) and Gene Expression Omnibus (GEO) (n = 97) databases. The metabolic stratification of HNSCC samples was identified by using unsupervised k-means clustering. We analyzed the correlations of the metabolic subtypes in HNSCC with featured genomic alterations and known HNSCC subtypes. We further validated the metabolism-related subtypes based on features of ENO1, PFKFB3, NSDHL and SQLE expression in HNSCC by Immunohistochemistry. In addition, genomic characteristics of tumor metabolism that varied among different cancer types were confirmed. RESULTS: Based on the median expression of coexpressed cholesterogenic and glycolytic genes, HNSCC subtypes were identified, including glycolytic, cholesterogenic, quiescent and mixed subtypes. The quiescent subtype was associated with the longest survival and was distributed in stage I and G1 HNSCC. Mutation analysis of HNSCC genes indicated that TP53 has the highest mutation frequency. The CDKN2A mutation frequency has the most significant differences amongst these four subtypes. There is good overlap between our metabolic subtypes and the HNSCC subtype. CONCLUSION: The four metabolic subtypes were successfully determined in HNSCC. Compared to the quiescent subtype, glycolytic, cholesterogenic and mixed subtypes had significantly worse outcome, which might offer guidelines for developing a novel treatment strategy for HNSCC.

8.
Am J Orthod Dentofacial Orthop ; 163(4): 475-482, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36564316

RESUMO

INTRODUCTION: For patients with maxillary transverse deficiency, selecting an appropriate therapeutic method is important for the treatment effect and prognosis. Our study aimed to explore factors related to microimplant-assisted rapid palatal expansion (MARPE) in teenagers and young adults using cone-beam computed tomography. METHODS: Twenty-five patients who underwent MARPE were included in this retrospective study from February 2014 to June 2019. Midpalatal suture density (MPSD) ratio, midpalatal suture maturation (MPSM), bone effect, dentoalveolar effect, and dental effect in maxillary first molar were evaluated using cone-beam computed tomography. Spearman correlation analysis was used to analyze the correlation between the MPSD ratio, MPSM, age, and the expansion amount generated by MARPE. RESULTS: Twenty-five patients (mean age, 19.84 ± 3.96 years; range, 15-29 years) with maxillary transverse deficiency were analyzed. Age was negatively correlated with bone expansion, alveolar expansion, and alveolar change (all P <0.05). There was a negative correlation between MPSM and nasal cavity variation, bone expansion, and alveolar change (all P <0.05). The bone expansion was negatively correlated with MPSD ratio 3 (r = -0.417; P <0.05) and MPSD ratio 4 (all P <0.05). CONCLUSIONS: Age, MPSM, and MPSD ratio were significantly related to the MARPE effect. Age, MPSM, and MPSD ratio should be considered when choosing MARPE.


Assuntos
Técnica de Expansão Palatina , Palato , Humanos , Adolescente , Adulto Jovem , Adulto , Estudos Retrospectivos , Palato/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/métodos , Maxila
9.
Nat Commun ; 13(1): 6069, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241625

RESUMO

Interleukin-9 (IL-9)-producing CD4+ T helper cells (Th9) have been implicated in allergy/asthma and anti-tumor immunity, yet molecular insights on their differentiation from activated T cells, driven by IL-4 and transforming growth factor-beta (TGF-ß), is still lacking. Here we show opposing functions of two transcription factors, D-binding protein (DBP) and E2F8, in controlling Th9 differentiation. Specifically, TGF-ß and IL-4 signaling induces phosphorylation of the serine 213 site in the linker region of the Smad3 (pSmad3L-Ser213) via phosphorylated p38, which is necessary and sufficient for Il9 gene transcription. We identify DBP and E2F8 as an activator and repressor, respectively, for Il9 transcription by pSmad3L-Ser213. Notably, Th9 cells with siRNA-mediated knockdown for Dbp or E2f8 promote and suppress tumor growth, respectively, in mouse tumor models. Importantly, DBP and E2F8 also exhibit opposing functions in regulating human TH9 differentiation in vitro. Thus, our data uncover a molecular mechanism of Smad3 linker region-mediated, opposing functions of DBP and E2F8 in Th9 differentiation.


Assuntos
Interleucina-4 , Interleucina-9 , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Interleucina-4/metabolismo , Proteínas Repressoras/genética , RNA Interferente Pequeno/metabolismo , Serina/metabolismo , Linfócitos T Auxiliares-Indutores , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/metabolismo
10.
Biology (Basel) ; 11(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36290323

RESUMO

Periodontitis is a chronic inflammatory disease which increases in prevalence and severity in the older population. Aging is a leading risk factor for periodontitis, which exacerbates alveolar bone loss and results in tooth loss in the elderly. However, the mechanism by which aging affects periodontitis is not well understood. There is considerable evidence to suggest that targeting cellular senescence could slow down the fundamental aging process, and thus alleviate a series of age-related pathological conditions, likely including alveolar bone loss. Recently, it has been discovered that the senescent cells accumulate in the alveolar bone and promote a senescence-associated secretory phenotype (SASP). Senescent cells interacting with bacteria, together with secreted SASP components altering the local microenvironment and inducing paracrine effects in neighboring cells, exacerbate the chronic inflammation in periodontal tissue and lead to more alveolar bone loss. This review will probe into mechanisms underlying excessive alveolar bone loss in periodontitis with aging and discuss potential therapeutics for the treatment of alveolar bone loss targeting cellular senescence and the SASP. Inspecting the relationship between cellular senescence and periodontitis will lead to new avenues of research in this field and contribute to developing potential translatable clinical interventions to mitigate or even reverse the harmful effects of aging on oral health.

11.
Arthritis Rheumatol ; 74(10): 1699-1705, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35606923

RESUMO

OBJECTIVE: Sjögren's syndrome (SS) is a systemic autoimmune disease, and T cells play an important role in the initiation and perpetuation of the disease. In this study, we developed an immunotherapy for NOD/LtJ mice with SS-like symptoms by combining a transient depletion of CD4+ T cells with the administration of autoantigen-specific peptide Ro480. METHODS: NOD/LtJ mice were treated with single anti-CD4 monoclonal antibody (mAb) followed 2 days later by a series of 6 intraperitoneal injections of Ro480-494 every other day. Salivary flow rates were determined pre- and posttreatment once a week. Mice were euthanized 6 weeks after the initial anti-CD4 mAb treatment, salivary glands (SGs) were collected for analyses of histologic disease scores and inflammatory cell infiltration, polymerase chain reaction determination of genes was conducted, and flow cytometry analysis including major histocompatibility complex class II tetramer staining of immune cells was performed. In addition, adoptive transfer of Treg cells was administrated to investigate the function of the newly generating Treg cells in vivo. RESULTS: The combination of anti-CD4 mAb with autoantigen-specific peptide Ro480 generated SSA/Ro antigen-specific Treg cells in vivo, which can suppress interferon-γ production of CD4+ T cells and inflammation infiltration in SGs and maintain the function of SGs. CONCLUSION: Our findings provide a new approach to generating antigen-specific Treg cells in vivo for SS treatment, which may have implications for potential therapy for patients with SS.


Assuntos
Síndrome de Sjogren , Animais , Anticorpos Monoclonais , Autoantígenos , Interferon gama , Camundongos , Camundongos Endogâmicos NOD , Camundongos Endogâmicos , Ribonucleoproteínas , Linfócitos T Reguladores/patologia
12.
Acta Biochim Biophys Sin (Shanghai) ; 54(5): 647-656, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35593465

RESUMO

Ginsenoside Rh2 is one of rare panaxidiols extracted from Panax ginseng and a potential estrogen receptor ligand that exhibits moderate estrogenic activity. However, the effect of Rh2 on growth inhibition and its underlying molecular mechanism in human breast cells are not fully understood. In this study, we tested cell viability by MTT and colony formation assays. Cell growth and cell cycle were determined to investigate the effect of ginsenoside Rh2 by flow cytometry. The expressions of estrogen receptors (ERs), TNFα, and apoptosis-related proteins were detected by qPCR and western blot analysis. The mechanisms of ERα and ERß action were determined using transfection and inhibitors. Antitumor effect of ginsenoside Rh2 against MCF-7 cells was investigated in xenograft mice. Our results showed that ginsenoside Rh2 induced apoptosis and G1/S phase arrest in MCF-7 cells. Treatment of cells with ginsenoside Rh2 down-regulated protein levels of ERα, and up-regulated mRNA and protein levels of ERß and TNFα. We also found that ginsenoside Rh2-induced TNFα over-expression is through up-regulation of ERß initiated by ginsenoside Rh2. Furthermore, ginsenoside Rh2 induced MCF-7 cell apoptosis via estrogen receptor ß-TNFα pathway in vivo. These results demonstrate that ginsenoside Rh2 promotes TNFα-induced apoptosis and G1/S phase arrest via regulation of ERß.


Assuntos
Neoplasias da Mama , Ginsenosídeos , Animais , Feminino , Humanos , Camundongos , Apoptose , Proteínas Reguladoras de Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proliferação de Células , Receptor alfa de Estrogênio , Receptor beta de Estrogênio/genética , Ginsenosídeos/farmacologia , Ligantes , Receptores de Estrogênio , RNA Mensageiro , Fator de Necrose Tumoral alfa/genética
13.
Biomolecules ; 12(3)2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35327551

RESUMO

In the last decade, numerous circRNAs were discovered by virtue of the RNA-Seq technique. With the deepening of experimental research, circRNAs have brought to light the key biological functions and progression of human diseases. CircRNA ITCH has been demonstrated to be a tumor suppressor in numerous cancers, and recently it was found to play an important role in bone diseases, diabetes mellitus, and cardiovascular diseases. However, the functions of circ-ITCH have not been completely understood. In this review, we comprehensively provide a conceptual framework to elucidate circ-ITCH biological functions of cell proliferation, apoptosis and differentiation, and the pathological mechanisms of inflammation, drug resistance/toxicity, and tumorigenesis. Finally, we summarize its clinical applications in various diseases. This research aimed at clarifying the role of circ-ITCH, which could be a promising therapeutic target.


Assuntos
MicroRNAs , RNA Circular , Apoptose/genética , Proliferação de Células/genética , Genes Supressores de Tumor , Humanos , MicroRNAs/genética , RNA/genética , RNA Circular/genética
14.
J Mater Chem B ; 10(11): 1875-1885, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35234787

RESUMO

Successful implant-bone integration remains a formidable challenge in osteoporotic patients, because of excessive inflammatory reactions and osteoclastogenesis around the peri-implant bone tissue. This study designed biomimetic micro/sub-micro hierarchical surfaces on titanium implants based on natural bone hierarchical structures to mitigate macrophage-mediated inflammatory reactions, osteoclastogenesis, and osteogenesis in vitro, as well as promote early osseointegration in vivo. It was found that the biomimetic hierarchical surfaces inhibited M1 macrophage-mediated inflammatory reactions via suppression of the TLR2/NF-κB signaling pathway in vitro. Subsequently, osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was observed to be significantly enhanced on hierarchical surfaces in the presence of macrophage conditional media. Furthermore, osteoclast formation was also decreased by inhibiting the osteoclastogenesis regulatory factor NFATc-1 expression on hierarchical surfaces. In vivo, the implant with a micro/sub-micro hierarchical surface underwent rapid and early osseointegration, with the newly formed bone being tightly integrated with the implants. Hence, the hierarchical surface mitigated the inflammatory microenvironment around the implant, thereby inhibiting osteoclastogenesis. This study thus offers a novel biomimetic strategy for designing surface hierarchical topography to facilitate implant-bone osseointegration in osteoporotic patients.


Assuntos
Osseointegração , Osteogênese , Animais , Biomimética , Humanos , Ativação de Macrófagos , Ratos , Propriedades de Superfície
15.
Gerontology ; 68(3): 339-352, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34161948

RESUMO

With aging, a portion of cells, including mesenchymal stem cells (MSCs), become senescent, and these senescent cells accumulate and promote various age-related diseases. Therefore, the older age group has become a major population for MSC therapy, which is aimed at improving tissue regeneration and function of the aged body. However, the application of MSC therapy is often unsatisfying in the aged group. One reasonable conjecture for this correlation is that aging microenvironment reduces the number and function of MSCs. Cellular senescence also plays an important role in MSC function impairment. Thus, it is necessary to explore the relationship between senescence and MSCs for improving the application of MSCs in the elderly. Here, we present the influence of aging on MSCs and the characteristics and functional changes of senescent MSCs. Furthermore, current therapeutic strategies for improving MSC therapy in the elderly group are also discussed.


Assuntos
Células-Tronco Mesenquimais , Idoso , Envelhecimento , Senescência Celular , Humanos
16.
Stem Cells Int ; 2021: 5516521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34426741

RESUMO

Maxillofacial-derived mesenchymal stem cells (MFSCs) are a particular collective type of mesenchymal stem cells (MSCs) that originate from the hard and soft tissue of the maxillofacial region. Recently, many types of MFSCs have been isolated and characterized. MFSCs have the common characteristics of being extremely accessible and amazingly multipotent and thus have become a promising stem cell resource in tissue regeneration. However, different MFSCs can give rise to different cell lineages, have different advantages in clinical use, and regulate the immune and inflammation microenvironment through paracrine mechanisms in different ways. Hence, in this review, we will concentrate on the updated new findings of all types of MFSCs in tissue regeneration and also introduce the recently discovered types of MFSCs. Important issues about proliferation and differentiation in vitro and in vivo, up-to-date clinical application, and paracrine effect of MFSCs in tissue regeneration will also be discussed. Our review may provide a better guide for the clinical use of MFSCs and further direction of research in MFSC regeneration medicine.

17.
NPJ Regen Med ; 6(1): 34, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117259

RESUMO

The osteogenic potential of bone marrow mesenchymal stem cells (BMSCs) declines dramatically with aging. By using a calvarial defect model, we showed that a senolytic cocktail (dasatinib+quercetin; D + Q) improved osteogenic capacity of aged BMSC both in vitro and in vivo. The study presented a model to assess strategies to improve bone-forming potential on aged BMSCs. D + Q might hold promise for improving BMSC function in aged populations.

18.
iScience ; 24(5): 102446, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33997712

RESUMO

Adipose-derived mesenchymal stromal cells (ADSCs) play important roles in the alleviation of inflammation and autoimmune diseases. Interleukin-33 (IL-33), a member of the IL-1 family, has been shown to regulate innate and adaptive immunity. However, it is still unknown whether ADSCs regulate immune responses via IL-33. We show here that ADSCs produced IL-33 in response to IL-1ß stimulation, which depended on TAK1, ERK, and p38 pathways. ADSCs-derived IL-33 drove the proliferation of CD4+Foxp3+ST2+ regulatory T cells (Tregs) and alleviated experimental autoimmune Sjögren syndrome in mice. Importantly, human ADSCs also produced IL-33 in response to IL-1ß. Thus, we have revealed a previously unrecognized immunoregulatory function of ADSCs by IL-33 production in experimental autoimmunity, which may have clinical applications for human immunopathology.

19.
Appl Bionics Biomech ; 2021: 8874833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868456

RESUMO

The use of the C-expander is an effective treatment modality for maxillary skeletal deficiencies which can cause ailments and significantly reduce life expectancy in late adolescents and young adults. However, the morphological and dynamic effects on the nasal airway have not been reported. The main goal of this study was to evaluate the nasal airway changes after the implementation of a C-expander. A sample of nine patients (8 females, 1 male, age range from 15 to 29 years) was included. The morphology parameters and nasal airway ventilation parameters of pretreatment and posttreatment were measured. All study data were normally distributed. A paired t-test was used to evaluate the changes before and after treatment. After expansion, the mean and standard deviation values of intercanine maxillary width (CMW) and intermolar maxillary width (MMW) increased from 35.75 ± 2.48 mm and 54.20 ± 3.17 mm to 37.87 ± 2.26 mm (P < 0.05) and 56.65 ± 3.10 mm (P < 0.05), respectively. The nasal cavity volume increased from 20320.00 ± 3468.25 mm3 to 23134.70 ± 3918.84 mm3 (P < 0.05). The nasal pressure drop decreased from 36.34 ± 3.99 Pa to 30.70 ± 3.17 Pa (P < 0.05), while the value of the maximum velocity decreased from 6.50 ± 0.31 m/s to 5.85 ± 0.37 m/s (P < 0.05). Nasal resistance dropped remarkably from 0.16 ± 0.14 Pa/ml/s to 0.08 ± 0.06 Pa/ml/s (P < 0.05). The use of C-expander can effectively broaden the area and volume of the nasal airway, having a positive effect in the reduction of nasal resistance and improvement of nasal airway ventilation. For patients suffering from maxillary width deficiency and respiratory disorders, a C-expander may be an alternative method to treat the disease.

20.
Nat Commun ; 12(1): 2263, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859183

RESUMO

Argininosuccinate synthase (ASS1) is a ubiquitous enzyme in mammals that catalyzes the formation of argininosuccinate from citrulline and aspartate. ASS1 genetic deficiency in patients leads to an autosomal recessive urea cycle disorder citrullinemia, while its somatic silence or down-regulation is very common in various human cancers. Here, we show that ASS1 functions as a tumor suppressor in breast cancer, and the pesticide spinosyn A (SPA) and its derivative LM-2I suppress breast tumor cell proliferation and growth by binding to and activating ASS1. The C13-C14 double bond in SPA and LM-2I while the Cys97 (C97) site in ASS1 are critical for the interaction between ASS1 and SPA or LM-2I. SPA and LM-2I treatment results in significant enhancement of ASS1 enzymatic activity in breast cancer cells, particularly in those cancer cells with low ASS1 expression, leading to reduced pyrimidine synthesis and consequently the inhibition of cancer cell proliferation. Thus, our results establish spinosyn A and its derivative LM-2I as potent ASS1 enzymatic activator and tumor inhibitor, which provides a therapeutic avenue for tumors with low ASS1 expression and for those non-tumor diseases caused by down-regulation of ASS1.


Assuntos
Argininossuccinato Sintase/metabolismo , Neoplasias da Mama/tratamento farmacológico , Citrulinemia/tratamento farmacológico , Ativadores de Enzimas/farmacologia , Macrolídeos/farmacologia , Proteínas Supressoras de Tumor/agonistas , Adulto , Idoso , Animais , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/isolamento & purificação , Ácido Aspártico/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citrulina/metabolismo , Citrulinemia/genética , Ativadores de Enzimas/uso terapêutico , Feminino , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Macrolídeos/uso terapêutico , Metabolômica , Camundongos , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Pirimidinas/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...