Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Int J Biol Macromol ; : 133808, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004257

RESUMO

This study investigated the effects of cross-linking on the characteristics and in-vitro digestibility of starch-sucrose ester (SE) complexes. To achieve this, corn starch (CS) was cross-linked with various concentrations of sodium trimetaphosphate /sodium tripolyphosphate (5 %, 10 %, and 15 %). Subsequently, cross-linked starches (CLS) were complexed with SE through hydrothermal treatment. X-ray diffraction analysis revealed that V-type amylose-lipid complexes formed by the interaction between CS and SE. The resultant CS-SE complex significantly reduced CS digestibility, increasing its resistant starch (RS) content from 10.19 % to 22.71 %. The cross-linking modification did not alter the crystalline pattern of the CS-SE complex. Several CLS-SE complexes demonstrated higher enzymatic resistance compared to the CS-SE complex. The CLS10-SE complex exhibited the highest RS content of 39.37 % when the cross-linking agent concentration was 10 %. This phenomenon may be attributable to the cross-linking reaction having enhanced the interaction between starch molecular chains, reducing the solubility and swelling power, thereby hindering the accessibility of starch chains to digestive enzymes. These findings indicate that cross-linking modification is a practical approach to improving the anti-digestion performance of starch-lipid complexes.

2.
Org Biomol Chem ; 22(22): 4472-4477, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775306

RESUMO

A method for the synthesis of isothiocyanato alkyl sulfides from KSCN and DMTSM under metal-free conditions has been developed. The features of this reaction are low-cost, readily accessible starting materials and the use of KSCN as nucleophiles for C-NCS bond formation. Alkenes with various substituted groups react smoothly and the desired products are obtained in moderate to good yields.

3.
Gen Comp Endocrinol ; 353: 114512, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582176

RESUMO

Eels are gonochoristic species whose gonadal differentiation initiates at the yellow eel stage and is influenced by environmental factors. We revealed some sex-related genes were sex dimorphically expressed in gonads during gonadal sex differentiation of Japanese eel (Anguilla japonica); however, the expression of sex-related genes in the brain-pituitary during gonadal sex differentiation in eels is still unclear. This study aimed to investigate the sex-related gene expressions in the brain-pituitary and tried to clarify their roles in the brain and gonads during gonadal sex differentiation. Based on our previous histological study, the control eels developed as males, and estradiol-17ß (E2) was used for feminization. Our results showed that during testicular differentiation, the brain cyp19a1 transcripts and aromatase proteins were increased significantly; moreover, the cyp19a1, sf-1, foxl2s, and esrs (except gperb) transcripts in the midbrain/pituitary also were increased significantly. Forebrain gnrh1 transcripts increased slightly during gonadal differentiation of both sexes, but the gnrhr1b and gnrhr2 transcripts in the midbrain/pituitary were stable during gonadal differentiation. The expression levels of gths and gh in the midbrain/pituitary were significantly increased during testicular differentiation and were much higher in males than in E2-feminized females. These results implied that endogenous estrogens might play essential roles in the brain/pituitary during testicular differentiation, sf-1, foxl2s, and esrs may have roles in cyp19a1 regulation in the midbrain/pituitary of Japanese eels. For the GnRH-GTH axis, gths, especially fshb, may be regulated by esrs and involved in regulating testicular differentiation and development in Japanese eels.


Assuntos
Aromatase , Encéfalo , Hipófise , Diferenciação Sexual , Animais , Diferenciação Sexual/genética , Diferenciação Sexual/fisiologia , Masculino , Aromatase/genética , Aromatase/metabolismo , Feminino , Encéfalo/metabolismo , Hipófise/metabolismo , Anguilla/genética , Anguilla/metabolismo , Anguilla/crescimento & desenvolvimento , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Testículo/metabolismo , Gônadas/metabolismo , Gônadas/crescimento & desenvolvimento
4.
J Org Chem ; 89(10): 7330-7338, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38685200

RESUMO

An unprecedented protocol for the synthesis of 1,2,4-oxadiazoles from carbamates has been developed by employing nitriles as both substrates and solvents. This one-pot procedure achieves the formation of C═N bonds via TFA-mediated [3+2] annulation. A series of 1,2,4-oxadiazoles are synthesized in moderate to good yields.

5.
Chem Commun (Camb) ; 60(27): 3701-3704, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38477099

RESUMO

The synthesis of 3-aminopyrrole using the amination reagent nitrosoarenes and homopropargylic amines catalyzed by I2 through cyclization and amination has been developed. This protocol features excellent functional group tolerance and mild reaction conditions, yielding 3-aminopyrroles in moderate to good yields without a metal catalyst. This method realizes the construction and amination of the 3-aminopyrroles in which nitrosoarenes serve as the amine source and oxidant.

6.
Int J Biol Macromol ; 248: 125981, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499725

RESUMO

Seaweeds account for half of global mariculture and have become a key player in bio-based industries. Seaweed process typically starts with hot water blanching that helps reduce postharvest quality deterioration but also generates large amounts of hydrothermal waste. This study aims to explore the feasibility of isolating water-soluble biopolymers from seaweed hydrothermal waste and their potential applications. Using Saccharina japonica (formerly Laminaria japonica) blanching water as example, 2.9 g/L of polymeric substances were efficiently isolated by ultrafiltration, implying biopolymer coproduction potential of ~5.8 kt from blanching wastewater of current kelp industry. Physicochemical characterizations revealed polysaccharidic nature of the biopolymers, with high contents of fucose, uronic acids and sulfate, showing distinct but also overlapping structural features with hot water-extracted kelp polysaccharides. The main fraction of the blanching water polymers after anion exchange chromatography was acidic polysaccharide, the major backbone residues of which were (1-4) linked mannopyranose, (1-4) linked gulopyranose and (1-2) linked fucopyranose while the branched residues were primarily 1,3,4-, 1,2,4- and 1,4,6-linked hexoses but also 1,3,4-fucopyranose. Furthermore, the polysaccharides were found to have a good compatibility in cosmetic creams with added cohesiveness and freshness, demonstrating the application potential of such natural biopolymers from currently underexplored seaweed blanching water.


Assuntos
Kelp , Laminaria , Alga Marinha , Água , Polissacarídeos/química , Alga Marinha/química , Laminaria/química
7.
Adv Sci (Weinh) ; 10(25): e2300110, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37414584

RESUMO

Although immune checkpoint blockade (ICB) therapies have been approved for bladder cancer (BLCA), only a minority of patients respond to these therapies, and there is an urgent need to explore combined therapies. Systematic multi-omics analysis identified S100A5 as a novel immunosuppressive target for BLCA. The expression of S100A5 in malignant cells inhibited CD8+ T cell recruitment by decreasing pro-inflammatory chemokine secretion. Furthermore, S100A5 attenuated effector T cell killing of cancer cells by inhibiting CD8+ T cell proliferation and cytotoxicity. In addition, S100A5 acted as an oncogene, thereby promoting tumor proliferation and invasion. Targeting S100A5 synergized with the efficacy of anti-PD-1 treatment by enhancing infiltration and cytotoxicity of CD8+ T cells in vivo. Clinically, there was a spatially exclusive relationship between S100A5+ tumor cells and CD8+ T cells in tissue microarrays. Moreover, S100A5 negatively correlated with immunotherapy efficacy in our real-world and several public immunotherapy cohorts. In summary, S100A5 shapes a non-inflamed tumor microenvironment in BLCA by inhibiting the secretion of pro-inflammatory chemokines and the recruitment and cytotoxicity of CD8+ T cells. Targeting S100A5 converts cold tumors into hot tumors, thus enhancing the efficacy of ICB therapy in BLCA.


Assuntos
Carcinoma , Neoplasias da Bexiga Urinária , Humanos , Linfócitos T CD8-Positivos , Bexiga Urinária , Imunoterapia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Carcinoma/metabolismo , Microambiente Tumoral
8.
Cell Commun Signal ; 21(1): 152, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349820

RESUMO

BACKGROUND: Prostate cancer (PC) is the most common neoplasm and is the second leading cause of cancer-related deaths in men worldwide. The Hippo tumor suppressor pathway is highly conserved in mammals and plays an important role in carcinogenesis. YAP is one of major key effectors of the Hippo pathway. However, the mechanism supporting abnormal YAP expression in PC remains to be characterized. METHODS: Western blot was used to measure the protein expression of ATXN3 and YAP, while the YAP target genes were measured by real-time PCR. CCK8 assay was used to detect cell viability; transwell invasion assay was used to measure the invasion ability of PC. The xeno-graft tumor model was used for in vivo study. Protein stability assay was used to detect YAP protein degradation. Immuno-precipitation assay was used to detect the interaction domain between YAP and ATXN3. The ubiquitin-based Immuno-precipitation assays were used to detect the specific ubiquitination manner happened on YAP. RESULTS: In the present study, we identified ATXN3, a DUB enzyme in the ubiquitin-specific proteases family, as a bona fide deubiquitylase of YAP in PC. ATXN3 was shown to interact with, deubiquitylate, and stabilize YAP in a deubiquitylation activity-dependent manner. Depletion of ATXN3 decreased the YAP protein level and the expression of YAP/TEAD target genes in PC, including CTGF, ANKRD1 and CYR61. Further mechanistic study revealed that the Josephin domain of ATXN3 interacted with the WW domain of YAP. ATXN3 stabilized YAP protein via inhibiting K48-specific poly-ubiquitination process on YAP protein. In addition, ATXN3 depletion significantly decreased PC cell proliferation, invasion and stem-like properties. The effects induced by ATXN3 depletion could be rescued by further YAP overexpression. CONCLUSIONS: In general, our findings establish a previously undocumented catalytic role for ATXN3 as a deubiquitinating enzyme of YAP and provides a possible target for the therapy of PC. Video Abstract.


Assuntos
Neoplasias da Próstata , Transdução de Sinais , Masculino , Animais , Humanos , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Via de Sinalização Hippo , Proliferação de Células , Mamíferos/metabolismo , Ataxina-3/metabolismo , Proteínas Repressoras/metabolismo
9.
Front Pharmacol ; 14: 1163115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197406

RESUMO

Bladder cancer (BLCA) is a heterogeneous disease, and there are many classical molecular subtypes that reflect tumor immune microenvironment (TME) heterogeneity but their clinical utility is limited and correct individual treatment and prognosis cannot be predicted based on them. To find reliable and effective biomarkers and tools for predicting patients' clinical responses to several therapies, we developed a new systemic indicator of molecular vasculogenic mimicry (VM)-related genes mediated by molecular subtypes based on the Xiangya cohort and additional external BLCA cohorts using a random forest algorithm. A correlation was then done between the VM_Score and classical molecular subtypes, clinical outcomes, immunophenotypes, and treatment options for BLCA. With the VM_Score, it is possible to predict classical molecular subtypes, immunophenotypes, prognosis, and therapeutic potential of BLCA with high accuracy. The VM_Scores of high levels indicate a more anticancer immune response but a worse prognosis due to a more basal and inflammatory phenotype. The VM_Score was also found associated with low sensitivity to antiangiogenic and targeted therapies targeting the FGFR3, ß-catenin, and PPAR-γ pathways but with high sensitivity to cancer immunotherapy, neoadjuvant chemotherapy, and radiotherapy. A number of aspects of BLCA biology were reflected in the VM_Score, providing new insights into precision medicine. Additionally, the VM_Score may be used as an indicator of pan-cancer immunotherapy response and prognosis.

10.
Br J Pharmacol ; 180(13): 1690-1709, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36692417

RESUMO

BACKGROUND AND PURPOSE: Liver failure is associated with psychiatric alterations, partly resulting from the increased brain dopamine levels. We investigated the relationship between increased dopamine levels and mental abnormalities using bile duct ligation (BDL) rats and the mechanism by which liver failure increased dopamine levels in SH-SY5Y cells. Behavioural tests were carried out on day 13 and 27 following BDL, along with measurements of dopamine and metabolites, expressions of enzymes and transporters related to dopamine metabolism, and its transport into the cortex and the hippocampus. SH-SY5Y cells were used to investigate whether NH4 Cl, bile acids and bilirubin affected expression of tyrosine hydroxylase or not. Tyrosine hydroxylase (TH) expression in SH-SY5Y cells co-incubated with bilirubin and signal pathway inhibitors was measured. KEY RESULTS: Open-field test results demonstrated BDL rats showed anxiety-like behaviour, accompanied by increased dopamine levels and expression of TH protein in the cortex. Membrane bound long form (MB)-COMT, slightly but significantly decreased. SH-SY5Y cells indicated that increased bilirubin levels was a factor in inducing TH expression. Both inhibitor of NF-κB pathway BAY 11-7082 and silencing NF-κB p65 reversed bilirubin-induced upregulation of TH protein. NF-κB activator TNF-α increased expression of TH protein. Roles of bilirubin in increases of TH protein expressions and dopamine levels were measured using hyperbilirubinemia rats. Anxiety-like behaviour, was associated with increased dopamine levels and TH protein expressions in hyperbilirubinemia rats. CONCLUSION AND IMPLICATIONS: BDL significantly increased dopamine levels in rat cortex partly due to bilirubin-mediated TH induction. Increased bilirubin induced TH expression via activating NF-κB signalling pathway.


Assuntos
Falência Hepática , Neuroblastoma , Ratos , Humanos , Animais , Tirosina 3-Mono-Oxigenase/metabolismo , Dopamina/metabolismo , NF-kappa B/metabolismo , Neuroblastoma/metabolismo , Ductos Biliares/cirurgia , Falência Hepática/metabolismo , Hiperbilirrubinemia/metabolismo , Bilirrubina/metabolismo , Bilirrubina/farmacologia , Ligadura , Córtex Cerebral/metabolismo , Fígado/metabolismo
11.
Theranostics ; 12(14): 6291-6307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168624

RESUMO

The limited effect of adjuvant therapy for advanced bladder cancer (BCa) leads to a poor prognosis. Increasing evidence has shown that RNA N6-methyladenosine (m6A) modification plays important functional roles in tumorigenesis. Nevertheless, the role and mechanism of m6A-modified noncoding RNAs (ncRNAs) in BCa remain largely unknown. Methods: RT-PCR, western blotting and ONCOMINE dataset were used to determine the dominant m6A-related enzyme in BCa. M6A-lncRNA epitranscriptomic microarray was used to screen candidate targets of METTL14. RT-PCR, MeRIP and TCGA dataset were carried out to confirm the downstream target of METTL14. CHIRP/MS was conducted to identify the candidate proteins binding to lncDBET. RT-PCR, western blotting, RIP and KEGG analysis were used to confirm the target of lncDBET. The levels of METTL14, lncDBET and FABP5 were tested in vitro and in vivo. CCK-8, EdU, transwell and flow cytometry assays were performed to determine the oncogenic function of METTL14, lncDBET and FABP5, and their regulatory networks. Results: We identified that the m6A level of total RNA was elevated and that METTL14 was the dominant m6A-related enzyme in BCa. m6A modification mediated by METTL14 promoted the malignant progression of BCa by promoting the expression of lncDBET. Upregulated lncDBET activated the PPAR signalling pathway to promote the lipid metabolism of cancer cells through direct interaction with FABP5, thus promoting the malignant progression of BCa in vitro and in vivo. Conclusions: Our study establishes METTL14/lncDBET/FABP5 as a critical oncogenic axis in BCa.


Assuntos
RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Carcinogênese/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , RNA Longo não Codificante/genética , Sincalida/metabolismo , Neoplasias da Bexiga Urinária/patologia
12.
Acta Biochim Biophys Sin (Shanghai) ; 54(7): 987-998, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35880568

RESUMO

Bladder cancer (BC) is one of the most prevalent and life-threatening cancers among the male population worldwide. Sex determining region Y-box protein 5 (SOX5) plays important roles in a variety of human cancers. However, little research has been conducted on the function and underlying mechanism of SOX5 in BC. In the present study, we first reveal the increased expression of SOX5 in BC tissues and in vitro cells lines. Second, we discover that inhibition of SOX5 inhibits cell growth and migration but promotes cell apoptosis. Meanwhile, ectopic SOX5 expression stimulates cell growth and migration in BC cells. Then, we show that suppressing SOX5 inhibits the expression of DNA methyltransferase 1 (DNMT1), and that overexpressing DNMT1 alleviates the cell progress of BC cells inhibited by SOX5. Furthermore, we demonstrate that DNMT1 inhibits p21 expression by affecting DNA methylation of the p21 promoter. Collectively, we demonstrate that SOX5 exerts its functions in BC cells by modulating the SOX5/DNMT1/p21 pathway. Finally, we demonstrate that SOX5 knockdown inhibits xenograft tumor growth in vivo. In conclusion, our study elucidates the oncogenic role of SOX5 and its underlying molecular mechanism in BC, and reveals a novel pathway which has the potential to serve as a diagnostic biomarker and therapeutic target for BC.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Linhagem Celular Tumoral , Proliferação de Células/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
13.
Acta Pharm Sin B ; 12(5): 2391-2405, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646519

RESUMO

Drug-induced hyperglycemia/diabetes is a global issue. Some drugs induce hyperglycemia by activating the pregnane X receptor (PXR), but the mechanism is unclear. Here, we report that PXR activation induces hyperglycemia by impairing hepatic glucose metabolism due to inhibition of the hepatocyte nuclear factor 4-alpha (HNF4α)‒glucose transporter 2 (GLUT2) pathway. The PXR agonists atorvastatin and rifampicin significantly downregulated GLUT2 and HNF4α expression, and impaired glucose uptake and utilization in HepG2 cells. Overexpression of PXR downregulated GLUT2 and HNF4α expression, while silencing PXR upregulated HNF4α and GLUT2 expression. Silencing HNF4α decreased GLUT2 expression, while overexpressing HNF4α increased GLUT2 expression and glucose uptake. Silencing PXR or overexpressing HNF4α reversed the atorvastatin-induced decrease in GLUT2 expression and glucose uptake. In human primary hepatocytes, atorvastatin downregulated GLUT2 and HNF4α mRNA expression, which could be attenuated by silencing PXR. Silencing HNF4α downregulated GLUT2 mRNA expression. These findings were reproduced with mouse primary hepatocytes. Hnf4α plasmid increased Slc2a2 promoter activity. Hnf4α silencing or pregnenolone-16α-carbonitrile (PCN) suppressed the Slc2a2 promoter activity by decreasing HNF4α recruitment to the Slc2a2 promoter. Liver-specific Hnf4α deletion and PCN impaired glucose tolerance and hepatic glucose uptake, and decreased the expression of hepatic HNF4α and GLUT2. In conclusion, PXR activation impaired hepatic glucose metabolism partly by inhibiting the HNF4α‒GLUT2 pathway. These results highlight the molecular mechanisms by which PXR activators induce hyperglycemia/diabetes.

14.
Front Surg ; 9: 860663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647011

RESUMO

Aims: GATA3 is a key player in antitumor immunology, and continuous studies show that it might be a key biomarker for bladder cancer (BLCA). Thus, we lucubrate the immunological role of GATA3 in BLCA. Main Methods: We initially used pan-cancer analysis to analyze the expression pattern and immunological function of GATA3 with data gathered from the TCGA (The Cancer Genome Atlas). Then, in the BLCA tumor microenvironment (TME), we comprehensively associated GATA3 with immunomodulators, cancer immune cycles, tumor-infiltrating immune cells (TIICs), immune checkpoints, and T-cell inflamed scores(TIS). The role of GATA3 in predicting BLCA molecular subtypes and responsiveness to various treatment regimens was also investigated. We confirmed our findings in an external cohort and the Xiangya-Pingkuang cohort to guarantee the correctness of our study. Key Findings: GATA3 was preferentially expressed in the TME of numerous malignancies, including BLCA. High GATA3 expression was adversely connected with immunological aspects such as immunomodulators, cancer immune cycles, TIICs, immune checkpoints, and TIS in the BLCA TME. In addition, high GATA3 was more likely to be a luminal subtype, which meant it was less susceptible to cancer immunotherapy and neoadjuvant chemotherapy but more sensitive to targeted treatments. Significance: GATA3 may aid in the precision treatment for BLCA because it can accurately predict the clinical outcomes and the TME characteristics of BLCA.

15.
Front Public Health ; 10: 842452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372194

RESUMO

The Beijing 2022 Winter Olympics will begin soon, which is mainly focused on winter sports. Athletes from different countries will arrive in Beijing one after another for training and competition. The health protection of athletes of winter sports is very important in training and competition. The occurrence of sports injury is characterized by multiple factors, uncertainty, and accidents. This paper mainly pays attention to the head injury with the highest severity. Athletes' high safety awareness is a part of reducing injury, but safety awareness cannot effectively reduce the occurrence of injury in competition, and timely treatment of injured athletes is particularly important. After athletes are injured, a telemedicine image acquisition system can be built, so that medical experts can identify athletes' injuries in time and provide the basis for further diagnosis and treatment. In order to improve the accuracy of medical image processing, a C-support vector machine (SVM) medical image segmentation method combining the Chan-Vese (CV) model and SVM is proposed in this paper. After segmentation, the edge and detail features of the image are more prominent, which meet the requirements of high precision for medical image segmentation. Meanwhile, a high-precision registration algorithm of brain functional time-series images based on machine learning (ML) is proposed, and the automatic optimization of high-precision registration of brain function time-series images is performed by ML algorithm. The experimental results show that the proposed algorithm has higher segmentation accuracy above 80% and less registration time below 40 ms, which can provide a reference for doctors to quickly identify the injury and shorten the time.


Assuntos
Traumatismos em Atletas , Diagnóstico por Imagem , Máquina de Vetores de Suporte , Atletas , Traumatismos em Atletas/diagnóstico por imagem , Traumatismos em Atletas/epidemiologia , Humanos , Estações do Ano
16.
Acta Pharmacol Sin ; 43(6): 1441-1452, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34417575

RESUMO

Diabetes is often associated with vitamin A disorders. All-trans retinoic acid (ATRA) is the main active constituent of vitamin A. We aimed to investigate whether ATRA influences diabetic progression and its mechanisms using both Goto-Kazizazi (GK) rats and INS-1 cells. Rat experiments demonstrated that ATRA treatment worsened diabetes symptoms, as evidenced by an increase in fasting blood glucose (FBG) levels and impairment of glucose homeostasis. Importantly, ATRA impaired glucose-stimulated insulin secretion (GSIS) and increased the expression of sterol regulatory element-binding protein 1c (SREBP-1c) and uncoupling protein 2 (UCP2) in the rat pancreas. Data from INS-1 cells also showed that ATRA upregulated SREBP-1c and UCP2 expression and impaired GSIS at 23 mM glucose. Srebp-1c or Ucp2 silencing attenuated GSIS impairment by reversing the ATRA-induced increase in UCP2 expression and decrease in ATP content. ATRA and the retinoid X receptor (RXR) agonists 9-cis RA and LG100268 induced the gene expression of Srebp-1c, which was almost completely abolished by the RXR antagonist HX531. RXRα-LBD luciferase reporter plasmid experiments also demonstrated that ATRA concentration-dependently activated RXRα, the EC50 of which was 1.37 µM, which was lower than the ATRA concentration in the pancreas of GK rats treated with a high dose of ATRA (approximately 3 µM), inferring that ATRA can upregulate Srebp-1c expression in the pancreas by activating RXR. In conclusion, ATRA impaired GSIS partly by activating the RXR/SREBP-1c/UCP2 pathway, thus worsening diabetic symptoms. The results highlight the roles of ATRA in diabetic progression and establish new strategies for diabetes treatment.


Assuntos
Glucose , Vitamina A , Animais , Glucose/farmacologia , Insulina/metabolismo , Secreção de Insulina , Ratos , Receptores X de Retinoides/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Tretinoína/farmacologia , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo , Vitamina A/metabolismo
17.
J Cosmet Dermatol ; 21(3): 1106-1110, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34003572

RESUMO

BACKGROUND: Eyelashes play an important role in the perception of beauty and protection of eyeballs. The outcome of eyelash restoration varies and mainly depends on the surgeon's technique and no standard procedure exists. AIMS: To evaluate the effect of modified single-hair follicular unit grafting to esthetically restore eyelashes and provide a potential alternative of standard procedure. PATIENTS AND METHODS: A total of 34 patients with sparse or partially absent eyelashes who underwent modified procedure were included. Single-hair grafts were harvested from the donor site (post-auricular, nape, frontal hairline area). Grafts were transplanted with 23 gauge needle and fine forceps in the modified procedure. The patients were followed for a mean of 12 months after surgery. RESULTS: All patients were satisfied with the result 12 months after the surgery. An average of 46.5 grafts (34-68) were transplanted in each upper eyelid. The mean graft survival rate after 1 year was 87.2% (84%-92%). Of the 34 patients, three patients received a second session to achieve a denser appearance. No significant complication as trichiasis, infection, scarring, or eyeball injury occurred. CONCLUSION: This modified single-hair follicular unit grafting is a good alternative for esthetic eyelash restoration with good cosmetic results, relative easy maintenance, lack of complications, and long-term patient satisfaction.


Assuntos
Pestanas , Povo Asiático , Cicatriz , Folículo Piloso/transplante , Humanos , Transplante de Pele/métodos
18.
Am J Ind Med ; 65(1): 51-58, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34727383

RESUMO

BACKGROUND: Opioid use in the treatment of musculoskeletal injuries is a complex decision where benefits must be balanced with risk. Previous research has shown an association between higher opioid doses and adverse health effects. The study's objective was to investigate whether opioid prescriptions are associated with increased costs and deaths through an injury mechanism or as a direct result of the opioid prescription. METHODS: Data for 144,553 deidentified Ohio Bureau of Workers' Compensation claims from 2010 to 2014 with shoulder, knee, and low back injuries were obtained and followed until 2016. Each claim had associated prescription information. Injury claims were further classified using the allowed diagnoses by single or multiple body areas affected and injury severity ("simple" or "complex"). The outcome variables were medical and indemnity costs, lost days, MaxMED (maximum claim-prescribed daily morphine equivalent dose), and death status. Association between maximum opioid dose with deaths was determined by logistic regression analysis. RESULTS: Several outcome variables, including claim medical and indemnity costs, and the likelihood of claimant death, showed significant associations with the MaxMED. In the analysis of claim deaths, these associations held for all claim types (except complex), even after adjusting for age, gender, surgery, and lost time. CONCLUSION: The association between increasing opioid doses and deaths for low-severity diagnoses was disturbing given the lack of demonstrated efficacy of opioids for treatment of minor injuries. A focus on provider education, increased utilization of non-opioids, and early intervention for minor soft-tissue injuries could reduce claims costs, disability, and future deaths.


Assuntos
Doenças Musculoesqueléticas , Doenças Profissionais , Analgésicos Opioides , Humanos , Prescrições , Indenização aos Trabalhadores
19.
Front Pharmacol ; 12: 724471, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721021

RESUMO

Aim: Hepatic ischemia-reperfusion (HIR) induces remote organs injury, including the brain. The homeostasis of the brain is maintained by the blood-brain barrier (BBB); thus, we aimed to investigate whether HIR impaired BBB and attempted to elucidate its underlying mechanism. Methods: Cell viability of human cerebral microvascular endothelial cells (hCMEC/D3) was measured following 24 h incubation with a serum of HIR rat undergoing 1 h ischemia and 4 h reperfusion, liver homogenate, or lysate of primary hepatocytes of the rat. The liver homogenate was precipitated using (NH4)2SO4 followed by separation on three columns and electrophoresis to identify the toxic molecule. Cell activity, apoptosis, proliferation, cell cycle, and expressions of proteins related to cell cycle were measured in hCMEC/D3 cells incubated with identified toxic molecules. HIR rats undergoing 1 h ischemia and 24 h reperfusion were developed to determine the release of an identified toxic molecule. BBB function was indexed as permeability to fluorescein and brain water. Endothelial cell proliferation and expressions of proteins related to the cell cycle in cerebral microvessels were measured by immunofluorescence and western blot. Results: Toxic molecule to BBB in the liver was identified to be arginase. Arginase inhibitor nor-NOHA efficiently attenuated hCMEC/D3 damage caused by liver homogenate and serum of HIR rats. Both arginase and serum of HIR rats significantly lowered arginine (Arg) in the culture medium. Arg addition efficiently attenuated the impairment of hCMEC/D3 caused by arginase or Arg deficiency, demonstrating that arginase impaired hCMEC/D3 via depriving Arg. Both arginase and Arg deficiency damaged hCMEC/D3 cells by inhibiting cell proliferation, retarding the cell cycle to G1 phase, and downregulating expressions of cyclin A, cyclin D, CDK2, and CDK4. HIR notably increased plasma arginase activity and lowered Arg level, increased the BBB permeability accompanied with enhanced brain water, and decreased the proliferative cells (marked by Ki67) in cerebral microvessels (marked by CD31) and protein expressions of cyclin A, cyclin D, CDK2 and CDK4 in isolated brain microvessels. Oral supplement of Arg remarkably attenuated these HIR-induced alterations. Conclusion: HIR leads to substantial release of arginase from the injured liver and then deprives systemic Arg. The Arg deficiency further impairs BBB via inhibiting the proliferation of brain microvascular endothelial cells by cell cycle arrest.

20.
Front Immunol ; 12: 697026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34526985

RESUMO

N6-methylation of adenosine (m6A), a post-transcriptional regulatory mechanism, is the most abundant nucleotide modification in almost all types of RNAs. The biological function of m6A in regulating the expression of oncogenes or tumor suppressor genes has been widely investigated in various cancers. However, recent studies have addressed a new role of m6A modification in the anti-tumor immune response. By modulating the fate of targeted RNA, m6A affects tumor-associated immune cell activation and infiltration in the tumor microenvironment (TME). In addition, m6A-targeting is found to affect the efficacy of classical immunotherapy, which makes m6A a potential target for immunotherapy. Although m6A modification together with its regulators may play the exact opposite role in different tumor types, targeting m6A regulators has been shown to have wide implications in several cancers. In this review, we discussed the link between m6A modification and tumor with an emphasis on the importance of m6A in anti-tumor immune response and immunotherapy.


Assuntos
Adenosina/análogos & derivados , Antineoplásicos/uso terapêutico , Imunoterapia , Neoplasias/tratamento farmacológico , RNA Neoplásico/metabolismo , Microambiente Tumoral , Adenosina/genética , Adenosina/imunologia , Adenosina/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/imunologia , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA