Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Med Sci ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944201

RESUMO

BACKGROUND AND OBJECTIVE: Non-small cell lung cancer (NSCLC) is a pernicious tumor with high incidence and mortality rates. The incidence rate of NSCLC increases with age and poses a serious danger to human health. The aim of this study was to determine the mechanism by which (-)-epicatechin (EC) alleviates NSCLC. METHODS: Twenty-four pairs of NSCLC tissues and cancer-adjacent tissues were collected, and A549 and H460 radiotherapy-resistant strains were generated by repeatedly irradiating A549 and H460 cells with dose-gradient X-rays. Radiotherapy-resistant H460 cells were successfully injected subcutaneously into the left dorsal side of nude mice at a dose of 1 × 105 to establish an NSCLC animal model. The levels of interrelated genes and proteins were detected by RT‒qPCR and Western blotting, and cell proliferation and apoptosis were evaluated by CCK‒8 assay, Transwell assay, flow cytometry, and TUNEL staining. RESULTS: LOC107986454 was highly expressed in NSCLC patients, while miR-143-3p was expressed at low levels and was negatively correlated with LOC107986454. Functionally, EC promoted autophagy and apoptosis induced by radiotherapy, restrained cell proliferation and migration, and ultimately enhanced the radiosensitivity of NSCLC cells. A downstream mechanistic study showed that EC facilitated miR-143-3p expression by inhibiting LOC107986454 and then restraining the expression of EZH2, which ultimately facilitated autophagy and apoptosis in cancer cells, inhibited proliferation and migration, and enhanced the radiosensitivity of NSCLC cells. CONCLUSION: EC can enhance the radiosensitivity of NSCLC cells by regulating the LOC107986454/miR-143-3p/EZH2 axis.

2.
J Immunol Res ; 2022: 9916228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093435

RESUMO

Objective: This study explored the colorectal cancer exosome lncRNA prostate cancer associated transcript 1- (PCAT1) mediated circulating tumors and the mechanism of cell colorectal cancer liver metastasis. Methods: Exosomes were extracted from the primary colorectal cancer (CRC) cell lines HCT116 and SW480 and cultured with T84 and human umbilical vein endothelial (HUVE) cells. The expression of PCAT1 and miR-329-3p was detected by real-time quantitative polymerase chain reaction (RT-qPCR), the expression of Netrin-1, CD146, and epithelial mesenchymal transition (EMT) related proteins was detected by Western blot, the proliferation activity of T84 cells was detected by cell counting kit 8 (CCK-8), and cell migration was detected by Transwell. The expression of the F-actin signal was detected by immunofluorescence after coculture of exosomes with human umbilical vein endothelial cells (HUVECs). Changes in subcutaneous tumor and liver nodule size after PCAT1 deletion were observed in a mouse model of liver metastasis from rectal cancer. Results: PCAT1 expression was upregulated in primary cell lines and their exosomes. After exosomes were cocultured with colorectal cancer tumor circulating T84 cells, the expression of Netrin-1 and CD146 was upregulated, the expression of miR-329-3p was downregulated, the proliferation and migration ability of T84 cells were enhanced, and EMT occurred. After knocking down PCAT1, the above phenomenon was reversed. Similarly, after exosomes were cocultured with HUVECs, the expression of the F-actin signal increased, and after PCAT1 was knocked down, the F-actin signal also decreased. PCAT1 regulates miR-329-3p/Netrin-1 and affects the biological behavior of T84 and F-actin signal expression in HUVECs. In a mouse model of colorectal cancer liver metastasis, knocking down PCAT1 significantly reduced the nodules formed by liver metastasis in mice. Conclusions: LncRNA PCAT1 derived from colorectal cancer exosomes regulates the activity of the Netrin-1-CD146 complex in circulating tumor cells (CTCs) to promote the occurrence of colorectal cancer EMT and liver metastasis and provides new molecular targets for the treatment of colorectal cancer liver metastasis.


Assuntos
Antígeno CD146/metabolismo , Neoplasias Colorretais , Neoplasias Hepáticas , MicroRNAs , Netrina-1/metabolismo , RNA Longo não Codificante , Actinas/metabolismo , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Metástase Neoplásica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA