Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Sci Rep ; 14(1): 8781, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627497

RESUMO

SARS-CoV-2 provokes devastating tissue damage by cytokine release syndrome and leads to multi-organ failure. Modeling the process of immune cell activation and subsequent tissue damage is a significant task. Organoids from human tissues advanced our understanding of SARS-CoV-2 infection mechanisms though, they are missing crucial components: immune cells and endothelial cells. This study aims to generate organoids with these components. We established vascular immune organoids from human pluripotent stem cells and examined the effect of SARS-CoV-2 infection. We demonstrated that infections activated inflammatory macrophages. Notably, the upregulation of interferon signaling supports macrophages' role in cytokine release syndrome. We propose vascular immune organoids are a useful platform to model and discover factors that ameliorate SARS-CoV-2-mediated cytokine release syndrome.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/fisiologia , Células Endoteliais , Síndrome da Liberação de Citocina , Macrófagos , Organoides
2.
Dev Cell ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38582082

RESUMO

The commitment and differentiation of human placental progenitor cytotrophoblast (CT) cells are crucial for a successful pregnancy, but the underlying mechanism remains poorly understood. Here, we identified the transcription factor (TF), specificity protein 6 (SP6), as a human species-specific trophoblast lineage TF expressed in human placental CT cells. Using pluripotent stem cells as a model, we demonstrated that SP6 controls CT generation and the establishment of trophoblast stem cells (TSCs) and identified msh homeobox 2 (MSX2) as the downstream effector in these events. Mechanistically, we showed that SP6 interacts with histone acetyltransferase P300 to alter the landscape of H3K27ac at targeted regulatory elements, thereby favoring transcriptional activation and facilitating CT cell fate decisions and TSC maintenance. Our results established SP6 as a regulator of the human trophoblast lineage and implied its role in placental development and the pathogenies of placental diseases.

3.
Nat Protoc ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509352

RESUMO

Pigs share anatomical and physiological traits with humans and can serve as a large-animal model for translational medicine. Bona fide porcine pluripotent stem cells (PSCs) could facilitate testing cell and drug therapies. Agriculture and biotechnology may benefit from the ability to produce immune cells for studying animal infectious diseases and to readily edit the porcine genome in stem cells. Isolating porcine PSCs from preimplantation embryos has been intensively attempted over the past decades. We previously reported the derivation of expanded potential stem cells (EPSCs) from preimplantation embryos and by reprogramming somatic cells of multiple mammalian species, including pigs. Porcine EPSCs (pEPSCs) self-renew indefinitely, differentiate into embryonic and extra-embryonic lineages, and permit precision genome editing. Here we present a highly reproducible experimental procedure and data of an optimized and robust porcine EPSC culture system and its use in deriving new pEPSC lines from preimplantation embryos and reprogrammed somatic cells. No particular expertise is required for the protocols, which take ~4-6 weeks to complete. Importantly, we successfully established pEPSC lines from both in vitro fertilized and somatic cell nuclear transfer-derived embryos. These new pEPSC lines proliferated robustly over long-term passaging and were amenable to both simple indels and precision genome editing, with up to 100% targeting efficiency. The pEPSCs differentiated into embryonic cell lineages in vitro and teratomas in vivo, and into porcine trophoblast stem cells in human trophoblast stem cell medium. We show here that pEPSCs have unique epigenetic features, particularly H3K27me3 levels substantially lower than fibroblasts.

4.
J Allergy Clin Immunol ; 153(4): 1125-1139, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38072195

RESUMO

BACKGROUND: Inborn errors of immunity (IEI) often lack specific disease models and personalized management. Signal transducer and activator of transcription (STAT)-1 gain of function (GoF) is such example of an IEI with diverse clinical phenotype with unclear pathomechanisms and unpredictable response to therapy. Limitations in obtaining fresh samples for functional testing and research further highlights the need for patient-specific ex vivo platforms. OBJECTIVE: Using STAT1-GoF as an example IEI, we investigated the potential of patient-derived expanded potential stem cells (EPSC) as an ex vivo platform for disease modeling and personalized treatment. METHODS: We generated EPSC derived from individual STAT1-GoF patients. STAT1 mutations were confirmed with Sanger sequencing. Functional testing including STAT1 phosphorylation/dephosphorylation and gene expression with or without Janus activating kinase inhibitors were performed. Functional tests were repeated on EPSC lines with GoF mutations repaired by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) editing. RESULTS: EPSC were successfully reprogrammed from STAT1-GoF patients and expressed the same pluripotent makers as controls, with distinct morphologic differences. Patient-derived EPSC recapitulated the functional abnormalities of index STAT1-GoF patients with STAT1 hyperphosphorylation and increased expression of STAT1 and its downstream genes (IRF1, APOL6, and OAS1) after IFN-γ stimulation. Addition of ruxolitinib and baricitinib inhibited STAT1 hyperactivation in STAT1-GoF EPSC in a dose-dependent manner, which was not observed with tofacitinib. Corrected STAT1 phosphorylation and downstream gene expression were observed among repaired STAT1-GoF EPSC cell lines. CONCLUSION: This proof-of-concept study demonstrates the potential of our patient-derived EPSC platform to model STAT1-GoF. We propose this platform when researching, recapitulating, and repairing other IEI in the future.


Assuntos
Mutação com Ganho de Função , Fator de Transcrição STAT1 , Células-Tronco , Humanos , Mutação , Fosforilação , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Células-Tronco/imunologia , Células-Tronco/metabolismo
5.
Hum Cell ; 37(1): 323-336, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37759147

RESUMO

The development of efficient treatments for laryngeal squamous cell carcinoma (LSCC) is hindered by the lack of applicable tumor cell lines and animal models of the disease, especially those related to cancer stem-like cells (CSCs). CSCs play critical roles in tumor propagation and pathogenesis whereas no CSCs lines have been developed to date. In this study, we establish an LSCC cell line (FD-LS-6) from primary LSCC tumor tissue (not experienced single-cell cloning) and adapted a culturing condition for the expansion of potential stem cells (EPSCs) to isolate CSCs from FD-LS-6. We successfully derived novel CSCs and named them as LSCC sphere-forming cells (LSCSCs) which were subsequently characterized for their CSC properties. We showed that LSCSCs shared many properties of CSCs, including CSC marker, robust self-renewal capacity, tumorigenesis ability, potential to generate other cell types such as adipocytes and osteoblasts, and resistance to chemotherapy. Compared to parental cells, LSCSCs were significantly more potent in forming tumors in vivo in mice and more resistant to chemotherapy. LSCSCs have higher expressions of epithelial-mesenchymal transition proteins and chemotherapy resistance factors, and exhibit an activated COX2/PEG2 signaling pathway. Altogether, our work establishes the first CSCs of LSCC (FD-LS-6) and provides a tool to study tumorigenesis and metastasis of LSCC and help the development of anticancer therapies.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias de Cabeça e Pescoço , Camundongos , Animais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/patologia , Carcinogênese/patologia , Células-Tronco Neoplásicas/patologia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células
6.
Life Sci Alliance ; 7(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37949473

RESUMO

Programmed death ligand 1 (PD-L1) serves as a pivotal immune checkpoint in both the innate and adaptive immune systems. PD-L1 is expressed in macrophages in response to IFNγ. We examined whether PD-L1 might regulate macrophage development. We established PD-L1 KO (CD274 -/- ) human pluripotent stem cells and differentiated them into macrophages and observed a 60% reduction in CD11B+CD45+ macrophages in CD274 -/- ; this was orthogonally verified, with the PD-L1 inhibitor BMS-1166 reducing macrophages to the same fold. Single-cell RNA sequencing further confirmed the down-regulation of the macrophage-defining transcription factors SPI1 and MAFB Furthermore, CD274 -/- macrophages reduced the level of inflammatory signals such as NF-κB and TNF, and chemokine secretion of the CXCL and CCL families. Anti-inflammatory TGF-ß was up-regulated. Finally, we identified that CD274 -/- macrophages significantly down-regulated interferon-stimulated genes despite the presence of IFNγ in the differentiation media. These data suggest that PD-L1 regulates inflammatory programs of macrophages from human pluripotent stem cells.


Assuntos
Antígeno B7-H1 , Macrófagos , Humanos , Antígeno B7-H1/genética , Interferon gama/imunologia , NF-kappa B
7.
J Biol Chem ; 300(1): 105556, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097188

RESUMO

A renewable source of porcine macrophages derived from pluripotent stem cells (PSCs) would be a valuable alternative to primary porcine alveolar macrophages (PAMs) in the research of host-pathogen interaction mechanisms. We developed an efficient and rapid protocol, within 11 days, to derive macrophages from porcine PSCs (pPSCs). The pPSC-derived macrophages (pPSCdMs) exhibited molecular and functional characteristics of primary macrophages. The pPSCdMs showed macrophage-specific surface protein expression and macrophage-specific transcription factors, similar to PAMs. The pPSCdMs also exhibited the functional characteristics of macrophages, such as endocytosis, phagocytosis, porcine respiratory and reproductive syndrome virus infection and the response to lipopolysaccharide stimulation. Furthermore, we performed transcriptome sequencing of the whole differentiation process to track the fate transitions of porcine PSCs involved in the signaling pathway. The activation of transforming growth factor beta signaling was required for the formation of mesoderm and the inhibition of the transforming growth factor beta signaling pathway at the hematopoietic endothelium stage could enhance the fate transformation of hematopoiesis. In summary, we developed an efficient and rapid protocol to generate pPSCdMs that showed aspects of functional maturity comparable with PAMs. pPSCdMs could provide a broad prospect for the platforms of host-pathogen interaction mechanisms.


Assuntos
Macrófagos Alveolares , Células-Tronco Pluripotentes , Suínos , Animais , Endocitose , Hematopoese/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/citologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Mesoderma/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Transdução de Sinais/efeitos dos fármacos , Suínos/virologia , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fatores de Tempo
8.
EMBO J ; 42(21): e113448, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37737560

RESUMO

The nucleosome remodeling and histone deacetylase (NuRD) complex physically associates with BCL11B to regulate murine T-cell development. However, the function of NuRD complex in mature T cells remains unclear. Here, we characterize the fate and metabolism of human T cells in which key subunits of the NuRD complex or BCL11B are ablated. BCL11B and the NuRD complex bind to each other and repress natural killer (NK)-cell fate in T cells. In addition, T cells upregulate the NK cell-associated receptors and transcription factors, lyse NK-cell targets, and are reprogrammed into NK-like cells (ITNKs) upon deletion of MTA2, MBD2, CHD4, or BCL11B. ITNKs increase OPA1 expression and exhibit characteristically elongated mitochondria with augmented oxidative phosphorylation (OXPHOS) activity. OPA1-mediated elevated OXPHOS enhances cellular acetyl-CoA levels, thereby promoting the reprogramming efficiency and antitumor effects of ITNKs via regulating H3K27 acetylation at specific targets. In conclusion, our findings demonstrate that the NuRD complex and BCL11B cooperatively maintain T-cell fate directly by repressing NK cell-associated transcription and indirectly through a metabolic-epigenetic axis, providing strategies to improve the reprogramming efficiency and antitumor effects of ITNKs.


Assuntos
Histonas , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Animais , Humanos , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Dinâmica Mitocondrial , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Linfócitos T/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
9.
Cells ; 12(16)2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37626885

RESUMO

Pluripotent stem cells (PSCs) are important for studying development and hold great promise in regenerative medicine due to their ability to differentiate into various cell types. In this review, we comprehensively discuss the potential applications of both human and pig PSCs and provide an overview of the current progress and challenges in this field. In addition to exploring the therapeutic uses of PSC-derived cellular products, we also shed light on their significance in the study of interspecies chimeras, which has led to the creation of transplantable human or humanized pig organs. Moreover, we emphasize the importance of pig PSCs as an ideal cell source for genetic engineering, facilitating the development of genetically modified pigs for pig-to-human xenotransplantation. Despite the achievements that have been made, further investigations and refinement of PSC technologies are necessary to unlock their full potential in regenerative medicine and effectively address critical healthcare challenges.


Assuntos
Organogênese , Células-Tronco Pluripotentes , Humanos , Suínos , Animais , Engenharia Genética , Medicina Regenerativa , Tecnologia
10.
Cell Stem Cell ; 30(8): 1006-1007, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541206

RESUMO

Exploring the early stages of human embryonic development poses significant difficulties owing to ethical and technical limitations. Two recent studies in Nature report the self-organization of human stem cells into 3D embryoids that model features of the early post-implantation stages of human development.1,2.


Assuntos
Implantação do Embrião , Células-Tronco , Gravidez , Feminino , Humanos , Desenvolvimento Embrionário , Embrião de Mamíferos
11.
Nat Commun ; 14(1): 3995, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414760

RESUMO

Cell-cell communication is a key aspect of dissecting the complex cellular microenvironment. Existing single-cell and spatial transcriptomics-based methods primarily focus on identifying cell-type pairs for a specific interaction, while less attention has been paid to the prioritisation of interaction features or the identification of interaction spots in the spatial context. Here, we introduce SpatialDM, a statistical model and toolbox leveraging a bivariant Moran's statistic to detect spatially co-expressed ligand and receptor pairs, their local interacting spots (single-spot resolution), and communication patterns. By deriving an analytical null distribution, this method is scalable to millions of spots and shows accurate and robust performance in various simulations. On multiple datasets including melanoma, Ventricular-Subventricular Zone, and intestine, SpatialDM reveals promising communication patterns and identifies differential interactions between conditions, hence enabling the discovery of context-specific cell cooperation and signalling.


Assuntos
Comunicação Celular , Transdução de Sinais , Ligantes , Modelos Estatísticos , Transcriptoma
13.
Biol Reprod ; 108(6): 887-901, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37040346

RESUMO

The mule is the interspecific hybrid of horse and donkey and has hybrid vigor in muscular endurance, disease resistance, and longevity over its parents. Here, we examined adult fibroblasts of mule (MAFs) compared with the cells from their parents (donkey adult fibroblasts and horse adult fibroblasts) (each species has repeated three independent individuals) in proliferation, apoptosis, and glycolysis and found significant differences. We subsequently derived mule, donkey, and horse doxycycline (Dox)-independent induced pluripotent stem cells (miPSCs, diPSCs, and hiPSCs) from three independent individuals of each species and found that the reprogramming efficiency of MAFs was significantly higher than that of cells of donkey and horse. miPSCs, diPSCs, and hiPSCs all expressed the high levels of crucial endogenous pluripotency genes such as POU class 5 homeobox 1 (POU5F1, OCT4), SRY-box 2 (SOX2), and Nanog homeobox (NANOG) and propagated robustly in single-cell passaging. miPSCs exhibited faster proliferation and higher pluripotency and differentiation than diPSCs and hiPSCs, which were reflected in co-cultures and separate-cultures, teratoma formation, and chimera contribution. The establishment of miPSCs provides a unique research material for the investigation of "heterosis" and perhaps is more significant to study hybrid gamete formation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Cavalos , Animais , Reprogramação Celular , Equidae , Células Cultivadas , Diferenciação Celular/genética , Fibroblastos , Fator 3 de Transcrição de Octâmero/genética
14.
Cell Genom ; 3(3): 100276, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36950387

RESUMO

In contrast to mono- or biallelic loss of tumor-suppressor function, effects of discrete gene dysregulations, as caused by non-coding (epi)genome alterations, are poorly understood. Here, by perturbing the regulatory genome in mice, we uncover pervasive roles of subtle gene expression variation in cancer evolution. Genome-wide screens characterizing 1,450 tumors revealed that such quasi-insufficiency is extensive across entities and displays diverse context dependencies, such as distinct cell-of-origin associations in T-ALL subtypes. We compile catalogs of non-coding regions linked to quasi-insufficiency, show their enrichment with human cancer risk variants, and provide functional insights by engineering regulatory alterations in mice. As such, kilo-/megabase deletions in a Bcl11b-linked non-coding region triggered aggressive malignancies, with allele-specific tumor spectra reflecting gradual gene dysregulations through modular and cell-type-specific enhancer activities. Our study constitutes a first survey toward a systems-level understanding of quasi-insufficiency in cancer and gives multifaceted insights into tumor evolution and the tissue-specific effects of non-coding mutations.

15.
J Vis Exp ; (191)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36715426

RESUMO

The differentiation of natural killer (NK) cells from human pluripotent stem cells allows for research on and the manufacture of clinical-grade cellular products for immunotherapy. Described here is a two-phase protocol that uses a serum-free commercial medium and a cocktail of cytokines (interleukin [IL]-3, IL-7, IL-15, stem cell factor [SCF], and FMS-like tyrosine kinase 3 ligand [Ftl3L]) to differentiate human expanded potential stem cells (hEPSCs) into cells that possess NK cell properties in vitro with both 3-dimensional (3D) and 2-dimensional (2D) culture technology. Following this protocol, CD3-CD56+ or CD45+CD56+ NK cells are consistently generated. When cocultured with tumor targets for 3 h, the differentiated products display mild cytotoxicity as compared to an IL-2-independent permanent cell line, NK92mi cells. The protocol preserves the complexity of the differentiation microenvironment by the generation of 3D structures, thus facilitating the study of the spatial relationships between immune cells and their niches. Meanwhile, the 2D culture system enables the routine phenotypical validation of cell differentiation without harming the delicate differentiation niche.


Assuntos
Técnicas de Cocultura , Células Matadoras Naturais , Células-Tronco , Humanos , Diferenciação Celular , Linhagem Celular , Citocinas/metabolismo , Citotoxicidade Imunológica , Células Matadoras Naturais/citologia , Células-Tronco/citologia
16.
Cell Rep Med ; 3(12): 100849, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36495872

RESUMO

Direct in vivo investigation of human placenta trophoblast's susceptibility to SARS-CoV-2 is challenging. Here we report that human trophoblast stem cells (hTSCs) and their derivatives are susceptible to SARS-CoV-2 infection, which reveals heterogeneity in hTSC cultures. Early syncytiotrophoblasts (eSTBs) generated from hTSCs have enriched transcriptomic features of peri-implantation trophoblasts, express high levels of angiotensin-converting enzyme 2 (ACE2), and are productively infected by SARS-CoV-2 and its Delta and Omicron variants to produce virions. Antiviral drugs suppress SARS-CoV-2 replication in eSTBs and antagonize the virus-induced blockage of STB maturation. Although less susceptible to SARS-CoV-2 infection, trophoblast organoids originating from hTSCs show detectable viral replication reminiscent of the uncommon placental infection. These findings implicate possible risk of COVID-19 infection in peri-implantation embryos, which may go unnoticed. Stem cell-derived human trophoblasts such as eSTBs can potentially provide unlimited amounts of normal and genome-edited cells and facilitate coronavirus research and antiviral discovery.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Humanos , Feminino , Gravidez , SARS-CoV-2 , Trofoblastos , Placenta , Peptidil Dipeptidase A/genética , Antivirais/farmacologia
17.
Neuromuscul Disord ; 32(11-12): 908-922, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36418198

RESUMO

Mutations in the dystrophin gene cause the most common and currently incurable Duchenne muscular dystrophy (DMD) characterized by progressive muscle wasting. Although abnormal Ca2+ handling is a pathological feature of DMD, mechanisms underlying defective Ca2+ homeostasis remain unclear. Here we generate a novel DMD patient-derived pluripotent stem cell (PSC) model of skeletal muscle with an isogenic control using clustered regularly interspaced short palindromic repeat (CRISPR)-mediated precise gene correction. Transcriptome analysis identifies dysregulated gene sets in the absence of dystrophin, including genes involved in Ca2+ handling, excitation-contraction coupling and muscle contraction. Specifically, analysis of intracellular Ca2+ transients and mathematical modeling of Ca2+ dynamics reveal significantly reduced cytosolic Ca2+ clearance rates in DMD-PSC derived myotubes. Pharmacological assays demonstrate Ca2+ flux in myotubes is determined by both intracellular and extracellular sources. DMD-PSC derived myotubes display significantly reduced velocity of contractility. Compared with a non-isogenic wildtype PSC line, these pathophysiological defects could be rescued by CRISPR-mediated precise gene correction. Our study provides new insights into abnormal Ca2+ homeostasis in DMD and suggests that Ca2+ signaling pathways amenable to pharmacological modulation are potential therapeutic targets. Importantly, we have established a human physiology-relevant in vitro model enabling rapid pre-clinical testing of potential therapies for DMD.


Assuntos
Distrofia Muscular de Duchenne , Células-Tronco Pluripotentes , Humanos , Distrofina/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Sistemas CRISPR-Cas , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patologia , Músculo Esquelético/patologia , Fibras Musculares Esqueléticas/patologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia
18.
Nat Commun ; 13(1): 6051, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229619

RESUMO

Co-expression of chimeric switch receptors (CSRs) specific for PD-L1 improves the antitumor effects of chimeric antigen receptor (CAR) T cells. However, the effects of trans-recognition between CSRs and PD-L1 expressed by activated CAR T cells remain unclear. Here, we design a CSR specific for PD-L1 (CARP), containing the transmembrane and cytoplasmic signaling domains of CD28 but not the CD3 ζ chain. We show that CARP T cells enhance the antitumor activity of anti-mesothelin CAR (CARMz) T cells in vitro and in vivo. In addition, confocal microscopy indicates that PD-L1 molecules on CARMz T cells accumulate at cell-cell contacts with CARP T cells. Using single-cell RNA-sequencing analysis, we reveal that CARP T cells promote CARMz T cells differentiation into central memory-like T cells, upregulate genes related to Th1 cells, and downregulate Th2-associated cytokines through the CD70-CD27 axis. Moreover, these effects are not restricted to PD-L1, as CAR19 T cells expressing anti-CD19 CSR exhibit similar effects on anti-PSCA CAR T cells with truncated CD19 expression. These findings suggest that target trans-recognition by CSRs on CAR T cells may improve the efficacy and persistence of CAR T cells via the CD70-CD27 axis.


Assuntos
Antígenos CD28 , Receptores de Antígenos Quiméricos , Antígeno B7-H1/genética , Antígenos CD28/genética , Linhagem Celular Tumoral , Citocinas/metabolismo , RNA , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Mol Ther Oncolytics ; 26: 15-26, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35784403

RESUMO

Although chimeric antigen receptor T (CAR-T) cells have achieved remarkable successes in hematological malignancies, the efficacies of CAR-T cells against solid tumors remains unsatisfactory. Heterogeneous antigen expression is one of the obstacles on its effective elimination of solid cancer cells. DNAX-activating protein 10 (DAP10) interacts with natural killer group 2D (NKG2D), acting as an adaptor that targets various malignant cells for surveillance. Here, we designed a DAP10 chimeric receptor that utilized native NKG2D on T cells to target NKG2D ligand-expressing cancer cells. We then tandemly incorporated it with anti-glypican 3 (GPC3) single-chain variable fragment (scFv) to construct a dual-antigen-targeting system. T cells expressing DAP10 chimeric receptor (DAP10-T cells) displayed with an enhancement on both cytotoxicity and cytokine secretion against solid cancer cell lines, and its tandem connection with anti-GPC3 scFv (CAR GPC3-DAP10-T cells) exhibited a dual-antigen-targeting capacity on eliminating heterogeneous cancer cells in vitro and suppressing the growth of heterogeneous cancer in vivo. Thus, this novel dual-targeting system enabled a high efficacy on killing cancer cells and extended the recognition profile of CAR-T cells toward tumors, which providing a potential strategy on treatment of solid cancer clinically.

20.
Front Immunol ; 13: 808347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693763

RESUMO

Chimeric antigen receptor (CAR) T cells have been successfully used in the therapy of B cell leukemia and lymphoma, but still have many challenges in their use for treating T cell malignancies, such as the lack of unique tumor antigens, their limitation of T cell expansion, and the need for third party donors or genome editing. Therefore, we need to find novel targets for CAR T cell therapy to overcome these challenges. Here, we found that both adult T-cell leukemia/lymphoma (ATLL) patients and ATLL cells had increased CCR8 expression but did not express CD7. Moreover, targeting CCR8 in T cells did not impair T cell expansion in vitro. Importantly, anti-CCR8 CAR T cells exhibited antitumor effects on ATLL- and other CCR8-expressing T-ALL cells in vitro and in vivo, and prolonged the survival of ATLL and Jurkat tumor-bearing mouse models. In conclusion, these collective results show that anti-CCR8 CAR T cells possess strong antitumor activity and represent a promising therapeutic approach for ATLL and CCR8+ tumors.


Assuntos
Leucemia-Linfoma de Células T do Adulto , Linfoma , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Receptores CCR8 , Receptores de Quimiocinas , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...