Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 285: 116987, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39299210

RESUMO

BACKGROUND: Studies about the combined effects of gaseous air pollutants and particulate matters are still rare. OBJECTIVES: This study was performed based on baseline survey of the Diverse Life-Course Cohort in the Beijing-Tianjin-Hebei (BTH) Region of North China to evaluate the association of long-term air pollutants with blood pressure and the combined effect of the air pollutants mixture among 32821 natural han population aged 20 years or above. METHODS: Three-year average exposure to air pollutants (PM10, PM2.5, PM1, O3, SO2, NO2, and CO) and PM2.5 components [black carbon (BC), ammonium (NH4+), nitrate (NO3-), sulfate (SO42-), and organic matter (OM)] of residential areas were calculated based on well-validated models. Generalized linear mixed models (GLMMs) were used to estimate the associations of air pollutants exposure with the systolic blood pressure (SBP), diastolic blood pressure (DBP), Mean arterial pressure (MAP), pulse pressure (PP) and prevalent hypertension. Quantile g-Computation and Bayesian Kernel Machine Regression (BKMR) were employed to assess the combined effect of the air pollutant mixture. RESULTS: We found that long-term exposures of O3, PM2.5, and PM2.5 components were stably and strongly associated with elevated SBP, DBP, and MAP and prevalent hypertension. O3 increased SBP, DBP, and MAP at a similar extent, but with greater effects; while, PM2.5 and PM2.5 components had a greater impact on SBP than DBP, which increased PP simultaneously. In multi-pollutant models, the combined effects of the air pollutant mixture on blood pressure and prevalent hypertension was predominantly influenced by O3, PM2.5, and O3, OM in different models, respectively. For example, O3, PM2.5 contributed 57.25 %, 39.22 % of the positive combined effect of the air pollutant mixture on SBP; and O3, OM positively contributed 70.00 %, 30.00 % on prevalent hypertension, respectively. There were interactions between O3, CO, SO2 and PM2.5 components on hbp, SBP and PP. CONCLUSIONS: The results showed positive associations of air pollutant mixtures with blood pressure, where O3 and PM2.5 (especially OM) might be primary contributors. There were interactions between gaseous air pollutants and PM2.5 components on blood pressure and prevalent hypertension.

2.
Adv Sci (Weinh) ; : e2406529, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303163

RESUMO

Recently, unconventional antiferromagnets that enable the spin splitting (SS) of electronic states have been theoretically proposed and experimentally realized, where the magnetic sublattices containing moments pointing at different directions are connected by a novel set of symmetries. Such SS is substantial, k-dependent, and independent of the spin-orbit coupling (SOC) strength, making these magnets promising materials for antiferromagnetic spintronics. Here, combined with angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations, a systematic study on CrSb, a metallic spin-split antiferromagnet candidate with Néel temperature TN = 703 K, is conducted. The data reveal the electronic structure of CrSb along both out-of-plane and in-plane momentum directions, rendering an anisotropic k-dependent SS that agrees well with the calculational results. The magnitude of such SS reaches up to at least 0.8 eV at non-high-symmetry momentum points, which is significantly higher than the largest known SOC-induced SS. This compound expands the choice of materials in the field of antiferromagnetic spintronics and is likely to stimulate subsequent investigations of high-efficiency spintronic devices that are functional at room temperature.

3.
Nutr J ; 23(1): 104, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39252042

RESUMO

BACKGROUND: The fat-to-muscle mass ratio (FMR), integrating the antagonistic effects of fat and muscle mass, has been suggested as a valuable indicator to assess cardiometabolic health independent of overall adiposity. However, the specific associations of total and regional FMR with cardiometabolic risk are poorly understood. We aimed to examine sex-specific associations of total and regional FMR with single and clustered cardiometabolic risk factors (CRFs). METHODS: 13,505 participants aged 20 years and above were included in the cross-sectional study. Fat mass and muscle mass were assessed using a bioelectrical impedance analysis device. FMR was estimated as fat mass divided by muscle mass in corresponding body parts (whole body, arm, leg, and trunk). Clustered CRFs was defined as the presence of two or more risk factors, including hypertension, elevated blood glucose, dyslipidemia, insulin resistance (IR), and hyperuricemia. IR was assessed by the triglyceride glucose (TyG) index. Multivariable logistic regression models were applied to explore the associations of FMR in the whole body and body parts with single and clustered CRFs. RESULTS: The odds ratios (ORs) increased significantly for all single and clustered CRFs with the per quartile increase of total and regional FMR in both sexes (P for trend < 0.001), following adjustment for confounders. Among the regional parts, FMRs of the legs presented the strongest associations for clustered CRFs in both men and women, with adjusted OR of 8.54 (95% confidence interval (CI): 7.12-10.24) and 4.92 (95% CI: 4.24-5.71), respectively. Significant interactions (P for interaction < 0.05) were identified between age and FMRs across different body parts, as well as between BMI status and FMRs in different regions for clustered CRFs. Restricted cubic splines revealed significant non-linear relationships between FMRs of different body parts and clustered CRFs in both sexes (P for nonlinear < 0.05). CONCLUSIONS: FMRs in the whole body and different regions were significantly associated with single and clustered CRFs in the general Chinese population. The association between FMR and clustered CRFs was more pronounced in youngers than in the elderly.


Assuntos
Fatores de Risco Cardiometabólico , Inquéritos Epidemiológicos , Humanos , Masculino , Feminino , China/epidemiologia , Estudos Transversais , Adulto , Pessoa de Meia-Idade , Inquéritos Epidemiológicos/estatística & dados numéricos , Inquéritos Epidemiológicos/métodos , Fatores Sexuais , Tecido Adiposo , Músculo Esquelético , Adiposidade , Composição Corporal , Adulto Jovem , Fatores de Risco , Idoso , Resistência à Insulina , Doenças Cardiovasculares/epidemiologia
4.
Phys Rev Lett ; 133(4): 046503, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39121416

RESUMO

The kagome spin ice can host frustrated magnetic excitations by flipping its local spin. Under an inelastic tunneling condition, the tip in a scanning tunneling microscope can flip the local spin, and we apply this technique to kagome metal HoAgGe with a long-range ordered spin ice ground state. Away from defects, we discover a pair of pronounced dips in the local tunneling spectrum at symmetrical bias voltages with negative intensity values, serving as a striking inelastic tunneling signal. This signal disappears above the spin ice formation temperature and has a dependence on the magnetic fields, demonstrating its intimate relation with the spin ice magnetism. We provide a two-level spin-flip model to explain the tunneling dips considering the spin ice magnetism under spin-orbit coupling. Our results uncover a local emergent excitation of spin ice magnetism in a kagome metal, suggesting that local electrical field induced spin flip climbs over a barrier caused by spin-orbital locking.

5.
Diabetes Res Clin Pract ; 214: 111783, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39002932

RESUMO

AIMS: The evidence for joint and independent associations of low muscle mass and low muscle strength with diabetes is limited and mixed. The study aimed to determine the associations of muscle parameters (muscle mass, strength, quality, and sarcopenia) and sarcopenia obesity with diabetes, and the previously unstudied mediating effect of inflammation. MATERIALS AND METHODS: A total of 13,420 adults from the 2023 China National Health Survey (CNHS) and 5,380 adults from the 2011-2014 National Health and Nutrition Examination Survey (NHANES) were included in this study. Muscle mass was determined using bioelectrical impedance analysis (BIA) in the CNHS, and whole-body dual X-ray absorptiometry (DXA) in the NHANES. Muscle strength was assessed using digital hand dynamometer. Multivariate logistic regression models were used to evaluate the associations of muscle parameters and sarcopenia obesity with diabetes. Inflammatory status was assessed using blood cell counts and two systemic inflammation indices (platelet-to-lymphocyte ratio (PLR) and system inflammation response index (SIRI)). Mediation analysis was conducted to examine inflammation's role in these associations. RESULTS: Low muscle mass and strength were independently related to diabetes. Low muscle quality was associated with elevated diabetes risk. Sarcopenia has a stronger association with diabetes compared to low muscle strength alone or mass alone (CNHS, odds ratio (OR) = 1.93, 95 % confidence interval (CI):1.64-2.27; NHANES, OR = 3.80, 95 %CI:2.58-5.58). Participants with sarcopenia obesity exhibit a higher risk of diabetes than those with obesity or sarcopenia alone (CNHS, OR = 2.21, 95 %CI:1.72-2.84; NHANES, OR = 6.06, 95 %CI:3.64-10.08). Associations between muscle parameters and diabetes were partially mediated by inflammation (mediation proportion: 1.99 %-36.64 %, P < 0.05). CONCLUSION: Low muscle mass and muscle strength are independently or jointly associated with diabetes, and inflammation might be a potential mechanism underlying this association. Furthermore, the synergistic effects of sarcopenia and obesity could significantly increase diabetes risk.


Assuntos
Inflamação , Força Muscular , Músculo Esquelético , Inquéritos Nutricionais , Sarcopenia , Humanos , Masculino , Feminino , China/epidemiologia , Inflamação/fisiopatologia , Inflamação/epidemiologia , Pessoa de Meia-Idade , Sarcopenia/epidemiologia , Sarcopenia/fisiopatologia , Sarcopenia/patologia , Adulto , Força Muscular/fisiologia , Estados Unidos/epidemiologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/fisiopatologia , Obesidade/epidemiologia , Obesidade/fisiopatologia , Obesidade/complicações , Idoso , Absorciometria de Fóton
6.
Phys Rev Lett ; 133(2): 026402, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39073939

RESUMO

In solid state systems, group representation theory is powerful in characterizing the behavior of quasiparticles, notably the energy degeneracy. While conventional group theory is effective in answering yes-or-no questions related to symmetry breaking, its application to determining the magnitude of energy splitting resulting from symmetry lowering is limited. Here, we propose a theory on quasisymmetry and near degeneracy, thereby expanding the applicability of group theory to address questions regarding large-or-small energy splitting. Defined within the degenerate subspace of an unperturbed Hamiltonian, quasisymmetries form an enlarged symmetry group eliminating the first-order splitting. This framework ensures that the magnitude of splitting arises as a second-order effect of symmetry-lowering perturbations, such as external fields and spin-orbit coupling. We systematically tabulate the quasisymmetry groups within 32 crystallographic point groups and find all the possible unitary quasisymmetry group structures regarding double degeneracy. Applying our theory to the realistic material AgLa, we predict a "quasi-Dirac semimetal" phase characterized by two tiny-gap band anticrossings.

7.
Opt Lett ; 49(12): 3496-3499, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875654

RESUMO

Photon-photon correlations assume a pivotal significance in optical coherence. Recently, a new, to the best of our knowledge, type of quantum photonic states, the coherent state of photonic dimers, has been introduced, wherein the fundamental building blocks are two-photon bound states, instead of individual photons as in conventional lasers. In this Letter, we investigate the first-order coherence properties of the photonic-dimer coherent states, as well as the interference patterns in a double-slit interferometer setup, and compare with the coherence properties of other optical light sources, e.g., the conventional laser and the thermal light.

8.
Nature ; 626(7999): 523-528, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356068

RESUMO

Spatial, momentum and energy separation of electronic spins in condensed-matter systems guides the development of new devices in which spin-polarized current is generated and manipulated1-3. Recent attention on a set of previously overlooked symmetry operations in magnetic materials4 leads to the emergence of a new type of spin splitting, enabling giant and momentum-dependent spin polarization of energy bands on selected antiferromagnets5-10. Despite the ever-growing theoretical predictions, the direct spectroscopic proof of such spin splitting is still lacking. Here we provide solid spectroscopic and computational evidence for the existence of such materials. In the noncoplanar antiferromagnet manganese ditelluride (MnTe2), the in-plane components of spin are found to be antisymmetric about the high-symmetry planes of the Brillouin zone, comprising a plaid-like spin texture in the antiferromagnetic (AFM) ground state. Such an unconventional spin pattern, further found to diminish at the high-temperature paramagnetic state, originates from the intrinsic AFM order instead of spin-orbit coupling (SOC). Our finding demonstrates a new type of quadratic spin texture induced by time-reversal breaking, placing AFM spintronics on a firm basis and paving the way for studying exotic quantum phenomena in related materials.

9.
Natl Sci Rev ; 11(2): nwac138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38264342

RESUMO

The topological magnetoelectric effect (TME) is a hallmark response of the topological field theory, which provides a paradigm shift in the study of emergent topological phenomena. However, its direct observation is yet to be realized due to the demanding magnetic configuration required to gap all surface states. Here, we theoretically propose that axion insulators with a simple ferromagnetic configuration, such as the MnBi2Te4/(Bi2Te3)n family, provide an ideal playground to realize the TME. In the designed triangular prism geometry, all the surface states are magnetically gapped. Under a vertical electric field, the surface Hall currents give rise to a nearly half-quantized orbital moment, accompanied by a gapless chiral hinge mode circulating in parallel. Thus, the orbital magnetization from the two topological origins can be easily distinguished by reversing the electric field. Our work paves the way for direct observation of the TME in realistic axion-insulator materials.

10.
Natl Sci Rev ; 11(2): nwac140, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38264341

RESUMO

The layer Hall effect describes electrons spontaneously deflected to opposite sides at different layers, which has been experimentally reported in the MnBi2Te4 thin films under perpendicular electric fields. Here, we reveal a universal origin of the layer Hall effect in terms of the so-called hidden Berry curvature, as well as material design principles. Hence, it gives rise to zero Berry curvature in momentum space but non-zero layer-locked hidden Berry curvature in real space. We show that, compared to that of a trivial insulator, the layer Hall effect is significantly enhanced in antiferromagnetic topological insulators. Our universal picture provides a paradigm for revealing the hidden physics as a result of the interplay between the global and local symmetries, and can be generalized in various scenarios.

11.
Natl Sci Rev ; 11(2): nwad066, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38213518

RESUMO

We review recent progress in the electronic structure study of intrinsic magnetic topological insulators (MnBi2Te4) · (Bi2Te3)n ([Formula: see text]) family. Specifically, we focus on the ubiquitously (nearly) gapless behavior of the topological Dirac surface state observed by photoemission spectroscopy, even though a large Dirac gap is expected because of surface ferromagnetic order. The dichotomy between experiment and theory concerning this gap behavior is perhaps the most critical and puzzling question in this frontier. We discuss various proposals accounting for the lack of magnetic effect on the topological Dirac surface state, which are mainly categorized into two pictures, magnetic reconfiguration and topological surface state redistribution. Band engineering towards opening a magnetic gap of topological surface states provides great opportunities to realize quantized topological transport and axion electrodynamics at higher temperatures.

12.
Nano Lett ; 23(21): 10081-10088, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37903418

RESUMO

Nontrivial electronic states are attracting intense attention in low-dimensional physics. Though chirality has been identified in charge states with a scalar order parameter, its intertwining with charge density waves (CDW), film thickness, and the impact on the electronic behaviors remain less well understood. Here, using scanning tunneling microscopy, we report a 2 × 2 chiral CDW as well as a strong suppression of the Te-5p hole-band backscattering in monolayer 1T-TiTe2. These exotic characters vanish in bilayer TiTe2 in a non-CDW state. Theoretical calculations prove that chirality comes from a helical stacking of the triple-q CDW components and, therefore, can persist at the two-dimensional limit. Furthermore, the chirality renders the Te-5p bands with an unconventional orbital texture that prohibits electron backscattering. Our study establishes TiTe2 as a promising playground for manipulating the chiral ground states at the monolayer limit and provides a novel path to engineer electronic properties from an orbital degree.

13.
Nano Lett ; 23(18): 8650-8656, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37704584

RESUMO

The long-sought Chern insulators that manifest a quantum anomalous Hall effect are typically considered to occur in ferromagnets. Here, we theoretically predict the realizabilities of Chern insulators in antiferromagnets, in which the magnetic sublattices are connected by symmetry operators enforcing zero net magnetic moment. Our symmetry analysis provides comprehensive magnetic layer point groups that allow antiferromagnetic (AFM) Chern insulators, revealing that an in-plane magnetic configuration is required. Followed by first-principles calculations, such design principles naturally lead to two categories of material candidates, exemplified by monolayer RbCr4S8 and bilayer Mn3Sn with collinear and noncollinear AFM orders, respectively. We further show that the Chern number could be tuned by slight ferromagnetic canting as an effective pivot. Our work elucidates the nature of the Chern-insulator phase in AFM systems, paving a new avenue for designing quantum anomalous Hall insulators with the integration of nondissipative transport and the promising advantages of the AFM order.

14.
Front Public Health ; 11: 1170584, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250094

RESUMO

Background: Studies comparing the effects of different sizes and concentrations of ambient particulate matter (PM) on pulmonary function in different regions and sexes remain sparse. Objectives: To investigate the associations of different sizes and levels of long-term ambient PM exposure with pulmonary function among people of different sexes in typical areas of South and North China. Methods: In 2021, a total of 1,592 participants aged 20-73 years were recruited to participate in the pulmonary function test from the baseline survey of the Diverse Life-Course Cohort (DLCC) in typical areas of Guangdong Province and Hebei Province. The three-year (2018-2020) average ambient PM concentrations were assessed from the ChinaHighPM1 dataset, ChinaHighPM2.5 dataset and ChinaHighPM10 dataset. Mean differences in pulmonary function were used in multilevel models for different regions and sexes. Results: We discovered significant associations of ambient PM exposure with reduced forced vital capacity (FVC) and increased forced expiratory volume in 1 s/forced vital capacity ratio (FEV1/FVC) among men and lower levels of FEV1 and FVC among women, such that a 5-µg/m3 concentration increase in PM1, PM2.5, and PM10 was associated with decreases in FVC of 122.1 ml (95% confidence interval (CI): 30.8, 213.4), 54.6 ml (95% CI: 15.8, 93.3) and 42.9 ml (95% CI: 12.7, 73.1) and increases in FEV1/FVC of 2.2% (95% CI: 0.6, 3.9), 1.1% (95% CI: 0.4, 1.9) and 0.9% (95% CI: 0.3, 1.5) among men and decreases in FEV1 of 51.1 ml (95% CI: 9.7, 92.4), 21.6 ml (95% CI: 4.3, 38.9) and 16.7 ml (95% CI: 3.3, 30.1) and in FVC of 77.8 ml (95% CI: 10.0, 145.6), 38.7 ml (95% CI: 9.0, 68.5) and 31.1 ml (95% CI: 8.1, 54.1) among women in Hebei Province. There was no association between ambient PM and pulmonary function in Guangdong Province. Conclusion: Long-term exposure to different sizes and concentrations of ambient PM were associated with FEV1 and FVC among men and women differently. The impact of ambient PM on FVC should be of greater concerned.


Assuntos
Poluentes Atmosféricos , Material Particulado , Masculino , Humanos , Feminino , Material Particulado/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Exposição Ambiental/efeitos adversos , Pulmão , China/epidemiologia
15.
Nat Commun ; 14(1): 2905, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217499

RESUMO

The century-long development of surface sciences has witnessed the discoveries of a variety of quantum states. In the recently proposed "obstructed atomic insulators", symmetric charges are pinned at virtual sites where no real atoms reside. The cleavage through these sites could lead to a set of obstructed surface states with partial electronic occupation. Here, utilizing scanning tunneling microscopy, angle-resolved photoemission spectroscopy and first-principles calculations, we observe spectroscopic signature of obstructed surface states in SrIn2P2. We find that a pair of surface states that are originated from the pristine obstructed surface states split in energy by a unique surface reconstruction. The upper branch is marked with a striking differential conductance peak followed by negative differential conductance, signaling its localized nature, while the lower branch is found to be highly dispersive. This pair of surface states is in consistency with our calculational results. Our finding not only demonstrates a surface quantum state induced by a new type of bulk-boundary correspondence, but also provides a platform for exploring efficient catalysts and related surface engineering.

16.
Front Public Health ; 11: 1163791, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213602

RESUMO

Background: Variations in the prevalence and pattern of multimorbidity might be attributable to lifestyle and environmental factors. This study was performed to determine the prevalence of common chronic diseases and to reveal multimorbidity patterns among adults in Guangdong province with Chaoshan, Hakka, and island cultures. Methods: We used data collected at the baseline survey (April-May 2021) of the Diverse Life-Course Cohort study and included 5,655 participants aged ≥20 years. Multimorbidity was defined as the presence of two or more of the 14 chronic diseases collected by self-reports, physical examinations, and blood tests. Multimorbidity patterns were explored by association rule mining (ARM). Results: Overall, 40.69% of participants had multimorbidity, and the prevalence among coastland (42.37%) and mountain residents (40.36%) was higher than that among island residents (37.97%). The prevalence of multimorbidity increased rapidly with higher age groups and showed an inflection point at 50 years, beyond which >50% of the middle-aged and older adults had multimorbidity. The proportion of people with two chronic diseases accounted for most cases of multimorbidity, and the strongest association was found between hyperuricemia and gout (lift of 3.26). The most prevalent multimorbidity pattern was dyslipidemia and hyperuricemia in the coastland areas and dyslipidemia combined with hypertension in the mountain and island areas. Furthermore, the most common triad combination consisted of cardiovascular diseases, gout, and hyperuricemia, which was verified in the mountain and coastal areas. Conclusion: These observations of multimorbidity patterns, including the most frequent multimorbidity and associations, will help healthcare providers develop healthcare plans that improve the effectiveness of multimorbidity management.


Assuntos
Gota , Hiperuricemia , Pessoa de Meia-Idade , Humanos , Idoso , Multimorbidade , Estudos de Coortes , Prevalência , Hiperuricemia/epidemiologia , Doença Crônica , China/epidemiologia
17.
Nano Lett ; 23(2): 414-421, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36607246

RESUMO

Heterostructures composed of the intrinsic magnetic topological insulator MnBi2Te4 and its nonmagnetic counterpart Bi2Te3 host distinct surface electronic band structures depending on the stacking order and exposed termination. Here, we probe the ultrafast dynamical response of MnBi2Te4 and MnBi4Te7 following near-infrared optical excitation using time- and angle-resolved photoemission spectroscopy and disentangle surface from bulk dynamics based on density functional theory slab calculations of the surface-projected electronic structure. We gain access to the out-of-equilibrium charge carrier populations of both MnBi2Te4 and Bi2Te3 surface terminations of MnBi4Te7, revealing an instantaneous occupation of states associated with the Bi2Te3 surface layer followed by carrier extraction into the adjacent MnBi2Te4 layers with a laser fluence-tunable delay of up to 350 fs. The ensuing thermal relaxation processes are driven by phonon scattering with significantly slower relaxation times in the magnetic MnBi2Te4 septuple layers. The observed competition between interlayer charge transfer and intralayer phonon scattering demonstrates a method to control ultrafast charge transfer processes in MnBi2Te4-based van der Waals compounds.

18.
Proc Natl Acad Sci U S A ; 119(51): e2211193119, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36520670

RESUMO

An interplay of geometrical frustration and strong quantum fluctuations in a spin-1/2 triangular-lattice antiferromagnet (TAF) can lead to exotic quantum states. Here, we report the neutron-scattering, magnetization, specific heat, and magnetocaloric studies of the recently discovered spin-1/2 TAF Na2BaCo(PO4)2, which can be described by a spin-1/2 easy axis XXZ model. The zero-field neutron diffraction experiment reveals an incommensurate antiferromagnetic ground state with a significantly reduced ordered moment of about 0.54(2) µB/Co. Different magnetic phase diagrams with magnetic fields in the ab plane and along the easy c-axis were extracted based on the magnetic susceptibility, specific heat, and elastic neutron-scattering results. In addition, two-dimensional (2D) spin dispersion in the triangular plane was observed in the high-field polarized state, and microscopic exchange parameters of the spin Hamiltonian have been determined through the linear spin wave theory. Consistently, quantum critical behaviors with the universality class of d = 2 and νz = 1 were established in the vicinity of the saturation field, where a Bose-Einstein condensation (BEC) of diluted magnons occurs. The newly discovered quantum criticality and fractional magnetization phase in this ideal spin-1/2 TAF present exciting opportunities for exploring exotic quantum phenomena.

19.
Innovation (Camb) ; 3(6): 100343, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36353676

RESUMO

Dirac semimetal is a phase of matter whose elementary excitation is described by the relativistic Dirac equation. In the limit of zero mass, its parity-time symmetry enforces the Dirac fermion in the momentum space, which is composed of two Weyl fermions with opposite chirality, to be non-chiral. Inspired by the flavor symmetry in particle physics, we theoretically propose a massless Dirac-like equation yet linking two Weyl fields with the identical chirality by assuming SU ( 2 ) isospin symmetry, independent of the space-time rotation exchanging the two fields. Dramatically, such symmetry is hidden in certain solid-state spin-1/2 systems with negligible spin-orbit coupling, where the spin degree of freedom is decoupled with the lattice. Therefore, the existence of the corresponding quasiparticle, dubbed as flavor Weyl fermion, cannot be explained by the conventional (magnetic) space group framework. The 4-fold degenerate flavor Weyl fermion manifests linear dispersion and a Chern number of ± 2, leading to a robust network of topologically protected Fermi arcs throughout the Brillouin zone. For material realization, we show that the transition-metal chalcogenide CoNb3S6 with experimentally confirmed collinear antiferromagnetic order is ideal for flavor Weyl semimetal under the approximation of vanishing spin-orbit coupling. Our work reveals a counterpart of the flavor symmetry in magnetic electronic systems, leading to further possibilities of emergent phenomena in quantum materials.

20.
Opt Lett ; 47(17): 4576-4579, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048708

RESUMO

Photonic Fock states are the most basic quantum states of a radiation field, but arbitrary number states are still difficult to produce. Here we propose to use superradiant atoms in a chiral waveguide to generate multi-photon Fock states deterministically. We calculate the explicit forms of the output quantum photonic states and their correlation functions. We further establish the conditions for the output optical fields to approach the Fock states asymptotically.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA