Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin Med ; 19(1): 36, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429802

RESUMO

BACKGROUND: Liver cirrhosis is a chronic liver disease with hepatocyte necrosis and lesion. As one of the TCM formulas Wuling Powder (WLP) is widely used in the treatment of liver cirrhosis. However, it's key functional components and action mechanism still remain unclear. We attempted to explore the Key Group of Effective Components (KGEC) of WLP in the treatment of Liver cirrhosis through integrative pharmacology combined with experiments. METHODS: The components and potential target genes of WLP were extracted from published databases. A novel node importance calculation model considering both node control force and node bridging force is designed to construct the Function Response Space (FRS) and obtain key effector proteins. The genetic knapsack algorithm was employed to select KGEC. The effectiveness and reliability of KGEC were evaluated at the functional level by using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, the effectiveness and potential mechanism of KGEC were confirmed by CCK-8, qPCR and Western blot. RESULTS: 940 effective proteins were obtained in FRS. KEGG pathways and GO terms enrichments analysis suggested that effective proteins well reflect liver cirrhosis characteristics at the functional level. 29 components of WLP were defined as KGEC, which covered 100% of the targets of the effective proteins. Additionally, the pathways enriched for the KGEC targets accounted for 83.33% of the shared genes between the targets and the pathogenic genes enrichment pathways. Three components scopoletin, caryophyllene oxide, and hydroxyzinamic acid from KGEC were selected for in vivo verification. The qPCR results demonstrated that all three components significantly reduced the mRNA levels of COL1A1 in TGF-ß1-induced liver cirrhosis model. Furthermore, the Western blot assay indicated that these components acted synergistically to target the NF-κB, AMPK/p38, cAMP, and PI3K/AKT pathways, thus inhibiting the progression of liver cirrhosis. CONCLUSION: In summary, we have developed a new model that reveals the key components and potential mechanisms of WLP for the treatment of liver cirrhosis. This model provides a reference for the secondary development of WLP and offers a methodological strategy for studying TCM formulas.

2.
BMC Complement Med Ther ; 24(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166916

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the destruction of synovial tissue and articular cartilage. Huangqi-Guizhi-Wuwu-Decoction (HGWD), a formula of Traditional Chinese Medicine (TCM), has shown promising clinical efficacy in the treatment of RA. However, the synergistic effects of key response components group (KRCG) in the treatment of RA have not been well studied. METHODS: The components and potential targets of HGWD were extracted from published databases. A novel node influence calculation model that considers both the node control force and node bridging force was designed to construct the core response space (CRS) and obtain key effector proteins. An increasing coverage coefficient (ICC) model was employed to select the KRCG. The effectiveness and potential mechanism of action of KRCG were confirmed using CCK-8, qPCR, and western blotting. RESULTS: A total of 796 key effector proteins were identified in CRS. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses confirmed their effectiveness and reliability. In addition, 59 components were defined as KRCG, which contributed to 85.05% of the target coverage of effective proteins. Of these, 677 targets were considered key reaction proteins, and their enriched KEGG pathways accounted for 84.89% of the pathogenic genes and 87.94% of the target genes. Finally, four components (moupinamide, 6-Paradol, hydrocinnamic acid, and protocatechuic acid) were shown to inhibit the inflammatory response in RA by synergistically targeting the cAMP, PI3K-Akt, and HIF-1α pathways. CONCLUSIONS: We have introduced a novel model that aims to optimize and analyze the mechanisms behind herbal formulas. The model revealed the KRCG of HGWD for the treatment of RA and proposed that KRCG inhibits the inflammatory response by synergistically targeting cAMP, PI3K-Akt, and HIF-1α pathways. Overall, the novel model is plausible and reliable, offering a valuable reference for the secondary development of herbal formulas.


Assuntos
Artrite Reumatoide , Fármacos Neuroprotetores , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Reprodutibilidade dos Testes , Artrite Reumatoide/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico
3.
Small ; : e2309597, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279613

RESUMO

Osteoarthritis (OA) is a dynamic condition characterized by cartilage damage and synovial inflammation. Ozone (O3 ) shows potential therapeutic effects owing to its anti-inflammatory properties; however, its high reactivity and short half-life substantially limit its effectiveness in OA treatment. In this study, an ozone-rich thermosensitive nanocomposite hydrogel loaded with D-mannose is developed for OA treatment. Briefly, O3 is encapsulated in nanoparticles (NPs) composed of perfluorotributylamine and fluorinated hyaluronic acid to improve its stability. Next, D-mannose is conjugated with α-amino of the hydroxypropyl chitin (HPCH) via Schiff base to prepare MHPCH. These nanoparticles are encapsulated in MHPCH to produce O3 NPs@MHPCH. In vitro cell experiments demonstrate that the O3 NPs@MHPCH treatment significantly reduced VEGF and inflammation levels, accompanied by a decrease in inflammatory factors such as IL-1ß, IL-6, TNF-α, and iNOS. Furthermore, O3 NPs@MHPCH promotes the expression of collagen II and aggrecan and stimulates chondrocyte proliferation. Additionally, in vivo studies show that O3 NPs@MHPCH significantly alleviated OA by reducing synovial inflammation, cartilage destruction, and subchondral bone remodeling. O3 NPs@MHPCH offers a promising option for improving the efficacy of O3 therapy and reducing the risk of synovial inflammation and cartilage degeneration in OA.

4.
Andrology ; 12(1): 222-230, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37222247

RESUMO

BACKGROUND: It has been shown that methylation in the promoter region of eNOS can downregulate eNOS expression resulting in the endothelial dysfunction. However, it is unclear whether low androgen levels and type 1 diabetes cause ED by methylating the promoter region of eNOS in the penile corpus cavernosum. OBJECTIVE: To clarify the effects of type 1 diabetes and hypo-androgen status on the methylation level of the promoter region of the eNOS gene in penile cavernous tissue and their relationship with the erectile function. METHODS: Fifty-eight eight-week-old male Sprague-Dawley rats were randomly divided into six groups (n = 6): sham operation group, castration group, castration+testosterone (cast+T) group, normoglycemia group, diabetic group, and diabetic+methyltransferase inhibitor (5-aza-dc, 1.5 mg/kg) group. The ICPmax/MAP, serum T, the concentration of nitric oxide (NO), the expression of DNMT1, DNMT3a, DNMT3b, and eNOS, and the methylation level of the eNOS promoter region in penile corpus cavernosum of rat were examined 4 weeks after surgery in the sham-operated group, the castration group, and the castration + testosterone replacement group. Those tests were examined after 6 weeks using of methylation inhibitors in the normoglycemic group, the diabetic group, and the diabetic + methylation inhibitor group. RESULTS: ICPmax/MAP, DNMT1, DNMT3a, DNMT3b, eNOS, and NO levels were significantly lower in castrated rats than in sham and cast+T rats (P < 0.05). ICPmax/MAP, eNOS, and NO levels were lower, and DNMT1, DNMT3a, and DNMT3b expression levels were significantly increased in the diabetic group compared with the normoglycemic and diabetic+methyltransferase inhibitor groups (P < 0.05). There was no significant difference in the methylation level of the promoter region of eNOS in penile cavernous tissue of castrated rats compared with the sham group or the testosterone replacement group. The methylation level of the promoter region of eNOS in penile cavernous tissue was significantly higher in the diabetic group than in the normoglycemic group and diabetic+methyltransferase inhibitor group (P < 0.05). CONCLUSION: Although low androgen status inhibited the level of methyltransferase in rat penile cavernous tissue, did not affect the level of methylation in the promoter region of eNOS. Hyperglycemia inhibits the NO level in the penile cavernous tissue and the erectile function of rats by upregulating the methyltransferase level in the penile cavernous tissue and the methylation level in the promoter region of eNOS. Methylation inhibitors can partly improve the erectile function in type 1 diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Disfunção Erétil , Animais , Masculino , Ratos , Androgênios/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Disfunção Erétil/etiologia , Metilação , Metiltransferases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Orquiectomia/efeitos adversos , Ereção Peniana , Pênis/metabolismo , Ratos Sprague-Dawley , Testosterona
5.
J Biomol Struct Dyn ; : 1-19, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37921741

RESUMO

Chronic heart failure (CHF) is the primary cause of death among patients with cardiovascular diseases, representing the advanced stage in the development of several cardiovascular conditions. Zhenwu decoction (ZWD) has gained widespread recognition as an efficacious remedy for CHF due to its potent therapeutic properties and absence of adverse effects. Nevertheless, the precise molecular mechanisms underlying its actions remain elusive. This study endeavors to unravel the intricate pharmacological underpinnings of five herbs within ZWD concerning CHF through an integrated approach. Initially, pertinent data regarding ZWD and CHF were compiled from established databases, forming the foundation for constructing an intricate network of active component-target interactions. Subsequently, a pioneering method for evaluating node significance was formulated, culminating in the creation of core functional association space (CFAS). To discern vital components, a novel dynamic programming algorithm was devised and used to determine the core component group (CCG) within the CFAS. Enrichment analysis of the CCG targets unveiled the potential coordinated molecular mechanisms of ZWD, illuminating its capacity to ameliorate CHF by modulating genes and related signaling pathways involved in pathological remodeling. Notable pathways encompass PI3K-Akt, diabetic cardiomyopathy, cAMP and MAPK signaling. Concluding the computational analyses, in vitro experiments were executed to assess the effects of vanillic acid, paradol, 10-gingerol and methyl cinnamate. Remarkably, these compounds demonstrated efficacy in reducing the production of ANP and BNP within isoprenaline-induced AC 16 cells, further validating their potential therapeutic utility. This investigation underscores the efficacy of the proposed model in enhancing the precision and reliability of CCG selection within ZWD, thereby presenting a novel avenue for mechanistic inquiries, compound refinement and the secondary development of TCM herbs.

7.
PLoS One ; 18(4): e0283001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37058491

RESUMO

The analytical validation is reported for a targeted methylation-based cell-free DNA multi-cancer early detection test designed to detect cancer and predict the cancer signal origin (tissue of origin). A machine-learning classifier was used to analyze the methylation patterns of >105 genomic targets covering >1 million methylation sites. Analytical sensitivity (limit of detection [95% probability]) was characterized with respect to tumor content by expected variant allele frequency and was determined to be 0.07%-0.17% across five tumor cases and 0.51% for the lymphoid neoplasm case. Test specificity was 99.3% (95% confidence interval, 98.6-99.7%). In the reproducibility and repeatability study, results were consistent in 31/34 (91.2%) pairs with cancer and 17/17 (100%) pairs without cancer; between runs, results were concordant for 129/133 (97.0%) cancer and 37/37 (100%) non-cancer sample pairs. Across 3- to 100-ng input levels of cell-free DNA, cancer was detected in 157/182 (86.3%) cancer samples but not in any of the 62 non-cancer samples. In input titration tests, cancer signal origin was correctly predicted in all tumor samples detected as cancer. No cross-contamination events were observed. No potential interferent (hemoglobin, bilirubin, triglycerides, genomic DNA) affected performance. The results of this analytical validation study support continued clinical development of a targeted methylation cell-free DNA multi-cancer early detection test.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Ácidos Nucleicos Livres/genética , Sensibilidade e Especificidade , Detecção Precoce de Câncer , Reprodutibilidade dos Testes , Metilação de DNA/genética , Biomarcadores Tumorais/genética , Neoplasias/diagnóstico , Neoplasias/genética
8.
Cancer Res ; 83(11): 1851-1865, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36912612

RESUMO

SIGNIFICANCE: Metastatic cancer cells upregulate ANO1 to activate cell-intrinsic and -extrinsic mechanisms that alter cholesterol metabolism and stimulate fibroblasts, which can be targeted with ANO1 inhibitors to inhibit metastatic growth. See related commentary by Singh and Mehla, p. 1759.


Assuntos
Proteínas de Neoplasias , Neoplasias , Humanos , Proteínas de Neoplasias/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Colesterol/metabolismo , Anoctamina-1/metabolismo , Neoplasias/metabolismo
9.
Cancer Cell ; 40(12): 1537-1549.e12, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36400018

RESUMO

In the Circulating Cell-free Genome Atlas (NCT02889978) substudy 1, we evaluate several approaches for a circulating cell-free DNA (cfDNA)-based multi-cancer early detection (MCED) test by defining clinical limit of detection (LOD) based on circulating tumor allele fraction (cTAF), enabling performance comparisons. Among 10 machine-learning classifiers trained on the same samples and independently validated, when evaluated at 98% specificity, those using whole-genome (WG) methylation, single nucleotide variants with paired white blood cell background removal, and combined scores from classifiers evaluated in this study show the highest cancer signal detection sensitivities. Compared with clinical stage and tumor type, cTAF is a more significant predictor of classifier performance and may more closely reflect tumor biology. Clinical LODs mirror relative sensitivities for all approaches. The WG methylation feature best predicts cancer signal origin. WG methylation is the most promising technology for MCED and informs development of a targeted methylation MCED test.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Humanos , Ácidos Nucleicos Livres/genética , Detecção Precoce de Câncer , Neoplasias/diagnóstico , Neoplasias/genética , Biomarcadores Tumorais/genética , Metilação de DNA
10.
Front Pharmacol ; 13: 1018273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339610

RESUMO

Traditional Chinese medicine (TCM) usually acts in the form of compound prescriptions in the treatment of complex diseases. The herbs contained in each prescription have the dual nature of efficiency and toxicity due to their complex chemical component, and the principle of prescription is usually to increase efficiency and reduce toxicity. At present, the studies on prescriptions have mainly focused on the consideration of the material basis and possible mechanism of the action mode, but the quantitative research on the compatibility rule of increasing efficiency and reducing toxicity is still the tip of the iceberg. With the extensive application of computational pharmacology technology in the research of TCM prescriptions, it is possible to quantify the mechanism of synergism and toxicity reduction of the TCM formula. Currently, there are some classic drug pairs commonly used to treat complex diseases, such as Tripterygium wilfordii Hook. f. with Lysimachia christinae Hance for lung cancer, Aconitum carmichaelii Debeaux with Glycyrrhiza uralensis Fisch. in the treatment of coronary heart disease, but there is a lack of systematic quantitative analysis model and strategy to quantitatively study the compatibility rule and potential mechanism of synergism and toxicity reduction. To address this issue, we designed an integrated model which integrates matrix decomposition and shortest path propagation, taking into account both the crosstalk of the effective network and the propagation characteristics. With the integrated model strategy, we can quantitatively detect the possible mechanisms of synergism and attenuation of Tripterygium wilfordii Hook. f. and Lysimachia christinae Hance in the treatment of lung cancer. The results showed the compatibility of Tripterygium wilfordii Hook. f. and Lysimachia christinae Hance could increase the efficacy and decrease the toxicity of lung cancer treatment through MAPK pathway and PD-1 checkpoint pathway in lung cancer.

11.
12.
Andrologia ; 54(8): e14477, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35596534

RESUMO

The exact mechanism by which testosterone deficiency causes ED has not yet been elucidated. TRPC is involved in the process of smooth muscle cell contraction and relaxation. The effect of androgens on TRPCs and their relationship with erectile function are currently unclear. Thirty male SD rats were randomly divided into six groups: control group, castration group, castration + testosterone (T) group (cast + T), control + transfection group (control + trans), control + empty transfection group and castration + transfection group (cast + trans). The transfection group rats were given with lentivirus (1 × 108 TU/mL, 15 µl) carrying the siRNA targeting TRPC4 gene in the rat penile cavernous tissue at 4 weeks after castration. The tests were performed at 5 weeks after castration. Comparing the cast group with the control, the ICPmax/MAP, p-eNOS/eNOS and NO levels in the rat penile tissue were significantly lower (p < 0.01) and the level of TRPC3, TRPC4 and TRPC6 in the rat penile tissue was significantly increased (p < 0.01). When the cast + trans group was compared to the cast group, ICPmax/MAP was markedly higher (p < 0.05), and the level of the TRPC4 was remarkably lower (p < 0.05). Low androgen levels might inhibit an erectile function through up-regulation of the expression of TRPC3, TRPC4 and TRPC6 in rat penile cavernous tissue. Inhibition the level of TRPC4 in rat penile tissue may improve the erectile function in low androgen levels.


Assuntos
Disfunção Erétil , Canais de Potencial de Receptor Transitório , Androgênios/farmacologia , Animais , Humanos , Masculino , Ereção Peniana , Pênis , Ratos , Ratos Sprague-Dawley , Canal de Cátion TRPC6/metabolismo , Testosterona/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/farmacologia
13.
Front Pharmacol ; 13: 801350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281924

RESUMO

As a systemic inflammatory arthritis disease, rheumatoid arthritis (RA) is complex and hereditary. Traditional Chinese medicine (TCM) has evident advantages in treating complex diseases, and a variety of TCM formulas have been reported that have effective treatment on RA. Clinical and pharmacological studies showed that Ermiao Powder, which consists of Phellodendron amurense Rupr. (PAR) and Atractylodes lancea (Thunb.) DC. (ALD), can be used in the treatment of RA. Currently, most studies focus on the anti-inflammatory mechanism of PAR and ALD and are less focused on their coordinated molecular mechanism. In this research, we established an integrative pharmacological strategy to explore the coordinated molecular mechanism of the two herbs of Ermiao Powder in treating RA. To explore the potential coordinated mechanism of PAR and ALD, we firstly developed a novel mathematical model to calculate the contribution score of 126 active components and 85 active components, which contributed 90% of the total contribution scores that were retained to construct the coordinated functional space. Then, the knapsack algorithm was applied to identify the core coordinated functional components from the 85 active components. Finally, we obtained the potential coordinated functional components group (CFCG) with 37 components, including wogonin, paeonol, ethyl caffeate, and magnoflorine. Also, functional enrichment analysis was performed on the targets of CFCG to explore the potential coordinated molecular mechanisms of PAR and ALD. The results indicated that the CFCG could treat RA by coordinated targeting to the genes involved in immunity and inflammation-related signal pathways, such as phosphatidylinositol 3­kinase/protein kinase B signaling pathway, mitogen-activated protein kinase signaling pathway, tumor necrosis factor signaling pathway, and nuclear factor-kappa B signaling pathway. The docking and in vitro experiments were used to predict the affinity and validate the effect of CFCG and further confirm the reliability of our method. Our integrative pharmacological strategy, including CFCG identification and verification, can provide the methodological references for exploring the coordinated mechanism of TCM in treating complex diseases and contribute to improving our understanding of the coordinated mechanism.

14.
Exp Mol Med ; 54(3): 216-225, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35352001

RESUMO

Cancer is one of the most difficult diseases in human society. Therefore, it is urgent for us to understand its pathogenesis and improve the cure rate. Exosomes are nanoscale membrane vesicles formed by a variety of cells through endocytosis. As a new means of intercellular information exchange, exosomes have attracted much attention. Noncoding RNAs exist in various cell compartments and participate in a variety of cellular reactions; in particular, they can be detected in exosomes bound to lipoproteins and free circulating molecules. Increasing evidence has suggested the potential roles of exosomal noncoding RNAs in the progression of tumors. Herein, we present a comprehensive update on the biological functions of exosomal noncoding RNAs in the development of cancer. Specifically, we mainly focus on the effects of exosomal noncoding RNAs, including microRNAs, circular RNAs, long noncoding RNAs, small nuclear RNAs, and small nucleolar RNAs, on tumor growth, metastasis, angiogenesis, and chemoresistance. Moreover, we outline the current clinical implications concerning exosomal noncoding RNAs in cancer treatment.


Assuntos
Exossomos , Neoplasias , RNA Longo não Codificante , Exossomos/genética , Exossomos/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA Circular , RNA Longo não Codificante/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
15.
Front Cell Dev Biol ; 10: 831894, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211473

RESUMO

Osteoporosis (OP) is a systemic disease susceptible to fracture due to the decline of bone mineral density and bone mass, the destruction of bone tissue microstructure, and increased bone fragility. At present, the treatments of OP mainly include bisphosphonates, hormone therapy, and RANKL antibody therapy. However, these treatments have observable side effects and cannot fundamentally improve bone metabolism. Currently, the prescription of herbal medicine and their derived proprietary Chinese medicines are playing increasingly important roles in the treatment of OP due to their significant curative effects and few side effects. Among these prescriptions, Gushukang Granules (GSK), Xianling Gubao Capsules (XLGB), and Er-xian Decoction (EXD) are widely employed at the clinic on therapy of OP, which also is in line with the compatibility principle of "different treatments for the same disease" in herbal medicine. However, at present, the functional interpretation of "different treatments for the same disease" in herbal medicine still lacks systematic quantitative research, especially on the detection of key component groups and mechanisms. To solve this problem, we designed a new bioinformatics model based on random walk, optimized programming, and information gain to analyze the components and targets to figure out the Functional Response Motifs (FRMs) of different prescriptions for the therapy of OP. The distribution of high relevance score, the number of reported evidence, and coverage of enriched pathways were performed to verify the precision and reliability of FRMs. At the same time, the information gain and target influence of each component was calculated, and the key component groups in all FRMs of each prescription were screened to speculate the potential action mode of different prescriptions on the same disease. Results show that the relevance score and the number of reported evidence of high reliable genes in FRMs were higher than those of the pathogenic genes of OP. Furthermore, the gene enrichment pathways in FRMs could cover 79.6, 81, and 79.5% of the gene enrichment pathways in the component-target (C-T) network. Functional pathway enrichment analysis showed that GSK, XLGB, and EXD all treat OP through osteoclast differentiation (hsa04380), calcium signaling pathway (hsa04020), MAPK signaling pathway (hsa04010), and PI3K-Akt signaling pathway (hsa04151). Combined with experiments, the key component groups and the mechanism of "different treatments for the same disease" in the three prescriptions and proprietary Chinese medicines were verified. This study provides methodological references for the optimization and mechanism speculation of Chinese medicine prescriptions and proprietary Chinese medicines.

16.
MedComm (2020) ; 2(3): 453-466, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34766155

RESUMO

Colorectal cancer (CRC) is one of the most common malignancies currently. Despite advances in drug development, the survival and response rates in CRC patients are still poor. In our previous study, a library comprised of 1056 bioactive compounds was used for screening of drugs that could suppress CRC. Lomerizine 2HCl, which is an approved prophylactic drug for migraines, was selected for our studies. The results of in vitro and in vivo assays suggested that lomerizine 2HCl suppresses cell growth and promotes apoptosis in CRC cells. Moreover, lomerizine 2HCl inhibits cell migration and invasion of CRC. RNA sequencing analysis and Western blotting confirmed that lomerizine 2HCl can inhibit cell growth, migration, and invasion through PI3K/AKT/mTOR signaling pathway and induces protective autophagy in CRC. Meanwhile, autophagy inhibition by 3-methyladenine (3-MA) increases lomerizine 2HCl-induced cell apoptosis. Taken together, these results imply that lomerizine 2HCl is a potential anticancer agent, and the combination of lomerizine 2HCl and autophagy inhibitors may serve as a novel strategy to increase the antitumor efficacy of agents in the treatment of CRC.

17.
Front Pharmacol ; 12: 689767, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093212

RESUMO

Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer-related death and has a poor prognosis worldwide, thus, more effective drugs are urgently needed. In this article, a small molecule drug library composed of 1,056 approved medicines from the FDA was used to screen for anticancer drugs. The tetracyclic compound maprotiline, a highly selective noradrenergic reuptake blocker, has strong antidepressant efficacy. However, the anticancer effect of maprotiline remains unclear. Here, we investigated the anticancer potential of maprotiline in the HCC cell lines Huh7 and HepG2. We found that maprotiline not only significantly restrained cell proliferation, colony formation and metastasis in vitro but also exerted antitumor effects in vivo. In addition to the antitumor effect alone, maprotiline could also enhance the sensitivity of HCC cells to sorafenib. The depth studies revealed that maprotiline substantially decreased the phosphorylation of sterol regulatory element-binding protein 2 (SREBP2) through the ERK signaling pathway, which resulted in decreased cholesterol biosynthesis and eventually impeded HCC cell growth. Furthermore, we identified cellular retinoic acid binding protein 1 (CRABP1) as a direct target of maprotiline. In conclusion, our study provided the first evidence showing that maprotiline could attenuate cholesterol biosynthesis to inhibit the proliferation and metastasis of HCC cells through the ERK-SREBP2 signaling pathway by directly binding to CRABP1, which supports the strategy of repurposing maprotiline in the treatment of HCC.

18.
Andrology ; 9(1): 342-351, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33507631

RESUMO

BACKGROUND: Type 5 phosphodiesterase inhibitor (PDE5I) has become the first-line treatment for erectile dysfunction (ED). However, its effective rate for hypertension ED is only 60%-70%. How to improve the efficacy of ED treatment is the focus of current research. OBJECTIVE: To explore whether icariin can improve the erectile function of spontaneously hypertensive rats (SHR) by affecting post-translational protein-protein interactions to regulate endothelial nitric oxide synthetase (eNOS) activity. METHOD: Twelve-week-old healthy male SHR rats and Wistar-Kyoto rats (WKY) were randomly divided into four groups: SHR control group, SHR + icariin (10 mg/kg·d gavage) treatment group, WKY control group, and WKY + icariin (10 mg/kg·d gavage) treatment group (n = 5). After 4 weeks, the maximum penile intracavernous pressure/mean arterial pressure (ICPmax/MAP), the expression of heat-shock protein 90 (Hsp90), caveolin-1, calmodulin, p-eNOS, and eNOS in penile cavernous tissue and the content of nitric oxide (NO) and cGMP were measured. The interaction between eNOS and Hsp90, caveolin-1, and calmodulin were detected by immunoprecipitation. RESULT: The ICPmax/MAP in the SHR + icariin treatment group (0.08 ± 0.01, 0.23 ± 0.07, 0.40 ± 0.05) was significantly higher than the SHR group (0.03 ± 0.01, 0.13 ± 0.03, 0.21 ± 0.02) under 3V and 5V electrical stimulations (P < .05). Compared with the SHR group, the expression of HSP90, calmodulin, P-eNOS, eNOS, and P-eNOS/eNOS in the penile cavernous tissue of rats in the WKY group and the SHR + icariin treatment group were significantly increased (P < .05), and the expression of caveolin-1 was significantly decreased (P < .05). The NO content (2.16 ± 0.22 µmol/g) and cGMP concentration (3.69 ± 0.12 pmol/mg) in the SHR + icariin treatment group were significantly higher than those in the SHR group (1.01 ± 0.14 µmol/g, 2.31 ± 0.22 pmol/mg) (P < .05). Compared with the SHR group, the interaction between eNOS and HSP90 in the cavernosa of the rats in the SHR + icariin treatment group was significantly increased (P < .05), the interaction between eNOS and caveolin-1 was significantly decreased (P < .01), and the interaction between eNOS and calmodulin did not significantly change. DISCUSSION AND CONCLUSION: Up-regulating the expression of HSP90 and calmodulin and inhibiting caveolin-1 in SHR corpus cavernosum, promoting the interaction between eNOS and HSP90, inhibiting the interaction between eNOS and caveolin-1, increasing p-eNOS/eNOS, may be the mechanism of icariin that improves SHR erectile function.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Disfunção Erétil/tratamento farmacológico , Flavonoides/uso terapêutico , Óxido Nítrico Sintase Tipo III/metabolismo , Pênis/efeitos dos fármacos , Animais , Calmodulina/metabolismo , Caveolina 1/metabolismo , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas/farmacologia , Epimedium , Disfunção Erétil/enzimologia , Flavonoides/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Masculino , Pênis/enzimologia , Fitoterapia , Distribuição Aleatória , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
19.
Cell Death Dis ; 11(7): 524, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32655130

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors with poor survival. It is urgent to search for new efficient drugs with good stability and safety for clinical therapy. This study aims to identify potential anticancer drugs from a compound library consisting of 429 natural products. Echinatin, a compound isolated from the Chinese herb Glycyrrhiza uralensis Fisch, was found to markedly induce apoptosis and inhibit proliferation and colony-formation ability in ESCC. Confocal fluorescence microscopy data showed that echinatin significantly induced autophagy in ESCC cells, and autophagy inhibitor bafilomycinA1 attenuated the suppressive effects of echinatin on cell viability and apoptosis. Mechanistically, RNA sequencing coupled with bioinformatics analysis and a series of functional assays revealed that echinatin induced apoptosis and autophagy through inactivation of AKT/mTOR signaling pathway, whereas constitutive activation of AKT significantly abrogated these effects. Furthermore, we demonstrated that echinatin had a significant antitumor effect in the tumor xenograft model and markedly suppressed cell migration and invasion abilities of ESCC cells in a dose-dependent manner. Our findings provide the first evidence that echinatin could be a novel therapeutic strategy for treating ESCC.


Assuntos
Produtos Biológicos/uso terapêutico , Chalconas/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose , Autofagia , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Chalconas/farmacologia , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Transdução de Sinais , Transfecção
20.
Nat Med ; 25(12): 1928-1937, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31768066

RESUMO

Accurate identification of tumor-derived somatic variants in plasma circulating cell-free DNA (cfDNA) requires understanding of the various biological compartments contributing to the cfDNA pool. We sought to define the technical feasibility of a high-intensity sequencing assay of cfDNA and matched white blood cell DNA covering a large genomic region (508 genes; 2 megabases; >60,000× raw depth) in a prospective study of 124 patients with metastatic cancer, with contemporaneous matched tumor tissue biopsies, and 47 controls without cancer. The assay displayed high sensitivity and specificity, allowing for de novo detection of tumor-derived mutations and inference of tumor mutational burden, microsatellite instability, mutational signatures and sources of somatic mutations identified in cfDNA. The vast majority of cfDNA mutations (81.6% in controls and 53.2% in patients with cancer) had features consistent with clonal hematopoiesis. This cfDNA sequencing approach revealed that clonal hematopoiesis constitutes a pervasive biological phenomenon, emphasizing the importance of matched cfDNA-white blood cell sequencing for accurate variant interpretation.


Assuntos
Ácidos Nucleicos Livres/sangue , DNA Tumoral Circulante/sangue , Genômica , Neoplasias/sangue , Adulto , Biomarcadores Tumorais/sangue , DNA Tumoral Circulante/genética , Análise Mutacional de DNA , DNA de Neoplasias/sangue , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Mutação , Neoplasias/genética , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...