Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Control Release ; 360: 858-871, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37473808

RESUMO

Tumor-associated macrophages (TAMs) are the major immune cells infiltrating the tumor microenvironment (TME) and typically exhibit an immunosuppressive M2-like phenotype, which facilitates tumor growth and promotes resistance to immunotherapy. Additionally, tumor cells tend to express high levels of CD47, a "don't eat me" signal, that obstructs macrophage phagocytosis. Consequently, re-educating TAMs in combination with CD47 blockage is promising to trigger intense macrophage immune responses against tumors. As a toll-like receptor 7/8 agonist, resiquimod (R848) possesses the capacity to re-educate TAMs from M2 type to M1 type. We found that intratumoral administration of R848 synergistically improved the antitumor immunotherapeutic effect of CV1 protein (a SIRPα variant with high antagonism to CD47). However, the poor bioavailability and potential toxicity of this combo strategy remain a challenge. Here, a TAMs-targeted liposome (named: R-LS/M/CV1) co-delivering R848 and CV1 protein was constructed via decorating mannose on the liposomal surface. R-LS/M/CV1 exhibited high abilities of targeting, re-education and pro-phagocytosis of tumor cells to M2 macrophages in vitro. Intratumoral administration of R-LS/M/CV1 remarkedly eliminated tumor burden in the MC38 tumor model via repolarization of TAMs to M1 type, pro-phagocytosis of TAMs against tumors, and recruitment of tumor-infiltrating T cells. More encouragingly, due to the double targeting to TAMs and tumor cells of mannose and CV1 protein, R-LS/M/CV1 effectively accumulated at the tumor site, thereby not only remarkedly inhibiting tumors, but also exerting no hematological and histopathological toxicity when administered systemically. Our integrated strategy based on re-educating TAMs and CD47 blockade provides a promising approach to trigger macrophage immune responses against tumors for immunotherapy.


Assuntos
Lipossomos , Neoplasias , Humanos , Lipossomos/metabolismo , Antígeno CD47 , Manose , Macrófagos/metabolismo , Fagocitose , Neoplasias/metabolismo , Imunoterapia , Microambiente Tumoral
2.
Chem Biodivers ; 20(1): e202200814, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36471492

RESUMO

Diabetes mellitus (DM) is a serious disease affecting human health. Numerous attempts have been made to develop safe and effective new antidiabetic drugs. Recently, a series of G protein-coupled receptors for free fatty acids (FFAs) have been described and characterized, and small molecule agonists and antagonists of these receptors show considerable promise for managing diabetes and related complications. FFA-activated GPR120 could stimulate the release of glucagon-like peptide-1(GLP-1), which can enhance the glucose-dependent secretion of insulin from pancreatic ß cells. GPR120 is a promising target for treating type 2 DM (T2DM). Herein we designed and synthesized a series of novel GPR120 agonists based on the structure of TUG-891, which was the first potent and selective GPR120 agonist. Among the designed compounds, 18 f showed excellent GPR120 activation activity and high selectivity for GPR40 in vitro. Compound 18 f dose-dependently improved glucose tolerance in normal mice, and no hypoglycemic side effects were observed at high dose. In addition, compound 18 f increased insulin release and displayed good antidiabetic effect in diet-induced obese mice. Molecular simulations illustrated that compound 18 f could enter the active site of GPR120 and interact with Arg99. Based on these observations, compound 18 f may be a promising lead compound for the design of novel GPR120 agonists to treat T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Camundongos , Humanos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Insulina , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Ácidos Graxos não Esterificados , Glucose
3.
Molecules ; 27(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36558150

RESUMO

Diabetes mellitus (DM), a chronic metabolic disorder characterized by high blood glucose, not only poses a serious threat to human life and health, but also places an economic burden on society. Currently available antidiabetic pharmacological agents have some adverse effects, which have stimulated researchers to explore novel antidiabetic agents with different mechanisms of action. G-protein Coupled Receptor 120 (GPR120), also known as free fatty acid receptor 4 (FFAR4), which is activated by medium-chain and long-chain fatty acids, has emerged as an interesting potential target for the treatment of metabolic disorders. Herein, we designed and synthesized a series of novel GPR120 agonists based on the structure of TUG-891, which is susceptible to ß-oxidation and loses its GPR120 agonistic activity in vivo. Among the designed compounds, 14d showed excellent agonistic activity and selectivity and could improve glucose tolerance in normal mice in a dose-dependent manner. In addition, the compound 14d displayed good antidiabetic effects in diet-induced obese (DIO) mice and elevated insulin levels. Molecular simulations illustrated that compound 14d could enter the active site of GPR120 and interact with ARG99, which plays an important role in GPR120 activation. Based on these observations, compound 14d may be a promising lead compound deserving of further biological evaluation and structural modifications.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperinsulinismo , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Receptores Acoplados a Proteínas G/metabolismo
4.
Molecules ; 27(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296392

RESUMO

Enzymes are difficult to recycle, which limits their large-scale industrial applications. In this work, an ionic liquid-modified magnetic metal-organic framework composite, IL-Fe3O4@UiO-66-NH2, was prepared and used as a support for enzyme immobilization. The properties of the support were characterized with X-ray powder diffraction (XRD), Fourier-transform infrared (FTIR) spectra, transmission electron microscopy (TEM), scanning electronic microscopy (SEM), and so on. The catalytic performance of the immobilized enzyme was also investigated in the hydrolysis reaction of glyceryl triacetate. Compared with soluble porcine pancreatic lipase (PPL), immobilized lipase (PPL-IL-Fe3O4@UiO-66-NH2) had greater catalytic activity under reaction conditions. It also showed better thermal stability and anti-denaturant properties. The specific activity of PPL-IL-Fe3O4@UiO-66-NH2 was 2.3 times higher than that of soluble PPL. After 10 repeated catalytic cycles, the residual activity of PPL-IL-Fe3O4@UiO-66-NH2 reached 74.4%, which was higher than that of PPL-Fe3O4@UiO-66-NH2 (62.3%). In addition, kinetic parameter tests revealed that PPL-IL-Fe3O4@UiO-66-NH2 had a stronger affinity to the substrate and, thus, exhibited higher catalytic efficiency. The results demonstrated that Fe3O4@UiO-66-NH2 modified by ionic liquids has great potential for immobilized enzymes.


Assuntos
Líquidos Iônicos , Estruturas Metalorgânicas , Suínos , Animais , Lipase/química , Líquidos Iônicos/química , Enzimas Imobilizadas/química , Estruturas Metalorgânicas/química , Pâncreas/metabolismo , Fenômenos Magnéticos , Estabilidade Enzimática
5.
Materials (Basel) ; 15(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35683074

RESUMO

Molybdenum carbide (Mo2C) is a promising and low-cost catalyst for the reverse water−gas shift (RWGS) reaction. Doping the Mo2C surface with alkali metals can improve the activity of CO2 conversion, but the effect of these metals on CO2 conversion to CO remains poorly understood. In this study, the energies of CO2 dissociation and CO desorption on the Mo2C surface in the presence of different alkali metals (Na, K, Rb, and Cs) are calculated using density functional theory (DFT). Alkali metal doping results in increasing electron density on the Mo atoms and promotes the adsorption and activation of CO2 on Mo2C; the dissociation barrier of CO2 is decreased from 12.51 on Mo2C surfaces to 9.51−11.21 Kcal/mol on alkali metal-modified Mo2C surfaces. Energetic and electronic analyses reveal that although the alkali metals directly bond with oxygen atoms of the oxides, the reduction in the energy of CO2 dissociation can be attributed to the increased interaction between CO/O fragments and Mo in the transition states. The abilities of four alkali metals (Na, K, Rb, and Cs) to promote CO2 dissociation increase in the order Na (11.21 Kcal/mol) < Rb (10.54 Kcal/mol) < Cs (10.41 Kcal/mol) < K (9.51 Kcal/mol). Through electronic analysis, it is found that the increased electron density on the Mo atoms is a result of the alkali metal, and a greater negative charge on Mo results in a lower energy barrier for CO2 dissociation.

6.
Int J Pharm ; 620: 121746, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35427745

RESUMO

Tumor necrosis factor-related apoptosis ligand (TRAIL) is a promising antitumor agent candidate for its selective proapoptotic activity to various tumor cells. However, TRAIL showed limited efficacy in clinical trials despite of good tolerability. One important reason might be attributed to the poor tumor-homing ability of TRAIL. Herein, we designed an EGFR-targeting TRAIL (Z-TRAIL) by genetically fusing an EGFR-antagonistic affibody (ZEGFR:1907) to the N-terminus of TRAIL. Z-TRAIL was produced as a soluble protein with high yield in E. coli and it maintained the trimeric state of active TRAIL. Under the EGFR-binding mediated by ZEGFR:1907, Z-TRAIL showed a âˆ¼5 to 20-fold enhancement of cytotoxicity compared to TRAIL on tumor cells in vitro. Furthermore, fusion to ZEGFR:1907 endowed TRAIL with a âˆ¼1.8-fold increase of tumor uptake and a dramatical stronger apoptosis-inducing ability in the mice bearing EGFR-overexpressing A431 tumor xenografts. More importantly, Z-TRAIL exhibited significantly enhanced antitumor efficacy against whether EGFR high-expressing or low-expressing tumors than TRAIL in vivo. In addition, repeated injection of high-dose Z-TRAIL did not show obvious acute toxicity in mice. These results demonstrated that the newly engineered Z-TRAIL might be a promising agent for targeted therapy of EGFR-expressing tumors.


Assuntos
Antineoplásicos , Receptores ErbB , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Escherichia coli/metabolismo , Humanos , Camundongos , Inibidores de Proteínas Quinases , Proteínas Recombinantes de Fusão/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
7.
J Pharm Sci ; 111(2): 450-457, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34547305

RESUMO

Epidermal growth factor receptor (EGFR) is an efficient target for cancer therapy. In this study, a high-affinity EGFR-antagonistic affibody (ZEGFR) molecule coupled with cisplatin-loaded PEGylated liposomes (LS-DDP) was applied to actively target EGFR+ A431 tumor cells in vitro and in vivo. The LS-DDP coupled with ZEGFR (AS-DDP) had an average size of 140.01 ± 0.84 nm, low polydispersity, a zeta potential of -13.40 ± 0.8 mV, an acceptable encapsulation efficiency of 17.30 ± 1.35%, and released cisplatin in a slow-controlled manner. In vitro, AS-DDP demonstrated a higher amount of platinum intracellular uptake by A431 cells than LS-DDP. The IC50 value of AS-DDP (9.02 ± 1.55 µg/ml) was much lower than that of LS-DDP (16.44 ± 0.87 µg/ml), indicating that the anti-tumor effects of AS-DDP were remarkable due to the modification of ZEGFR. In vivo, the concentration of AS-DDP in the tumor site increased more than 1.76-fold, while an increase in apoptotic cells at 48 h compared to the LS-DDP was also observed, illustrating that AS-DDP possessed excellent tumor-targeting efficiency. As a result, the targeted nano-liposomes achieved greater tumor suppression. Therefore, selective targeting of LS-DDP coupled with ZEGFR enhanced the anti-tumor effects and appeared to be a promising strategy for the treatment of EGFR+ tumors.


Assuntos
Antineoplásicos , Cisplatino , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Receptores ErbB/metabolismo , Humanos , Lipossomos
8.
Chem Biodivers ; 19(2): e202100809, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34931450

RESUMO

This work deals with the design and synthesis of 18 barbituric acid derivatives bearing 1,3-dimethylbarbituric acid and cinnamic acid scaffolds to find potent anticancer agents. The target molecules were obtained through Knoevenagel condensation and acylation reaction. The cytotoxicity was assessed by the MTT assay. Flowcytometry was performed to determine the cell cycle arrest, apoptosis, ROS levels and the loss of MMP. The ratios of GSH/GSSG and the MDA levels were determined by using UV spectrophotometry. The results revealed that introducing substitutions (CF3 , OCF3 , F) on the meta- of the benzyl ring of barbituric acid derivatives led to a considerable increase in the antiproliferative activities compared with that of corresponding ortho- and para-substituted barbituric acid derivatives. Mechanism investigation implied that the 1c could increase the ROS and MDA level, decrease the ratio of GSH/GSSG and MMP, and lead to cell cycle arrest. Further research is needed for structural optimization to enhance hydrophilicity, thereby improve the biological activity of these compounds.


Assuntos
Antineoplásicos , Desenho de Fármacos , Antineoplásicos/química , Apoptose , Barbitúricos , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade
9.
Molecules ; 26(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34833999

RESUMO

GPR120 is a promising target for the treatment of type 2 diabetes (T2DM), which is activated by free fatty acids (FFAs) and stimulates the release of glucagon-like peptide-1(GLP-1). GLP-1, as an incretin, can enhance glucose-dependent secretion of insulin from pancreatic beta cells and reduce blood glucose. In this study, a series of novel GPR120 agonists were designed and synthesized to improve the stability and hydrophilicity of the phenylpropanoic acid GPR120 agonist TUG-891. Compound 11b showed excellent GPR120 agonistic activity and pharmacokinetic properties, and could reduce the blood glucose of normal mice in a dose-dependent manner. In addition, no hypoglycemic side effects were observed even at a dose of 100 mg/kg. Moreover, 11b showed good anti-hyperglycemic effects in diet-induced obese (DIO) mice. Molecular simulation illustrated that compound 11b could enter the active site of GPR120 and interact with ARG99. Taken together, the results indicate that compound 11b might be a promising drug candidate for the treatment of T2DM.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes , Receptores Acoplados a Proteínas G/agonistas , Animais , Células CHO , Cricetulus , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Receptores Acoplados a Proteínas G/metabolismo
10.
Colloids Surf B Biointerfaces ; 206: 111960, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34224932

RESUMO

In this study, imidazolium-based ionic liquid with [tf2N]- as the anion was successfully grafted to magnetic polydopamine nanoparticles (MPDA). The prepared materials were well characterized and used as supports for lipase immobilization. The immobilized lipase (PPL-ILs-MPDA) exhibited excellent activity and stability. The specific activity of PPL-ILs-MPDA was 2.15 and 1.49 folds higher than that of free PPL and PPL-MPDA. In addition, after 10 rounds of reuse, the residual activity of PPL-ILs-MPDA was 86.2 % higher than that of PPL-MPDA (75.4 %). Furthermore, the kinetic assay indicated that the affinity between PPL-ILs-MPDA and substrate had increased. Analysis of the secondary structure using circular dichroism was used to explain the mechanism underlying the improvement in the performance of PPL-ILs-MPDA. In addition, the immobilized lipase can be easily separated from the reaction system with a magnet. The observations regarding the development of new supports for lipase immobilization may provide new ideas regarding further studies in this field.


Assuntos
Líquidos Iônicos , Lipase , Enzimas Imobilizadas , Indóis , Fenômenos Magnéticos , Pâncreas , Polímeros
11.
Molecules ; 26(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071298

RESUMO

Chemotherapeutic agents, which contain the Michael acceptor, are potent anticancer molecules by promoting intracellular reactive oxygen species (ROS) generation. In this study, we synthesized a panel of PL (piperlongumine) analogs with chlorine attaching at C2 and an electron-withdrawing/electron-donating group attaching to the aromatic ring. The results displayed that the strong electrophilicity group at the C2-C3 double bond of PL analogs plays an important role in the cytotoxicity whereas the electric effect of substituents, which attached to the aromatic ring, partly contributed to the anticancer activity. Moreover, the protein containing sulfydryl or seleno, such as TrxR, could be irreversibly inhibited by the C2-C3 double bond of PL analogs, and boost intracellular ROS generation. Then, the ROS accumulation could disrupt the redox balance, induce lipid peroxidation, lead to the loss of MMP (Mitochondrial Membrane Potential), and ultimately result in cell cycle arrest and A549 cell line death. In conclusion, PL analogs could induce in vitro cancer apoptosis through the inhibition of TrxR and ROS accumulation.


Assuntos
Apoptose , Dioxolanos/química , Espécies Reativas de Oxigênio , Células A549 , Antineoplásicos/farmacologia , Ciclo Celular , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Cloro/química , Elétrons , Humanos , Peroxidação de Lipídeos , Potencial da Membrana Mitocondrial , Oxirredução , Sais de Tetrazólio/química , Tiazóis/química , Tiorredoxina Dissulfeto Redutase/metabolismo
12.
Bioorg Chem ; 103: 104182, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32890992

RESUMO

In this study, a series of 3,4-dihydroquinolin-2(1H)-one derivatives were designed and synthesized using two experimental models, namely maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ), to test the anticonvulsant activity of the target compound in vivo (i.p. in Kunming mice). The neurotoxicity (NT) of the target compound was measured by the rotating rod method (i.p. in Kunming mice). Six compounds with potential activity were selected from the two experimental models to test the 50% effective dose (ED50). In vitro binding experiments with the GABAA receptor were also performed. The results of the pharmacological experiments showed that compound 7-((5-(pentylthio)-1,3,4-oxadiazol-2-yl)methoxy)-3,4-dihydroquinolin-2(1H)-one (5b) showed the best anticonvulsant activity (MES, ED50 = 10.1 mg/kg; scPTZ, ED50 = 9.3 mg/kg), which was superior to activities shown by carbamazepine and ethosuximide, and it also exhibited the most potent binding affinity to GABAA receptors (IC50 = 0.12 µM). The GABA content in Wistar rat brains (i.p.) was also investigated, and the results showed that compound 5b may have a certain effect on the GABA system, as it increased the GABA concentration in the brain of rats. Molecular docking was used to study the binding mode of compound 5b and the GABAA receptor. Compound 5b showed significant interactions with residues at the benzodiazepines binding site on the GABAA receptor. The physicochemical and pharmacokinetic properties of the target compounds were predicted using Discovery Studio 2019 and ChemBioDraw Ultra 14.0.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Quinolonas/uso terapêutico , Receptores de GABA-A/metabolismo , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/metabolismo , Anticonvulsivantes/farmacocinética , Desenho de Fármacos , Eletrochoque , Epilepsia/induzido quimicamente , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pentilenotetrazol , Quinolonas/síntese química , Quinolonas/metabolismo , Quinolonas/farmacocinética , Ratos Wistar , Relação Estrutura-Atividade
13.
Eur J Med Chem ; 206: 112672, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798790

RESUMO

In this study, a series of 1,3,4-oxadiazole derivatives (5a-s, 10a-s, and 16a-d) were designed and synthesized using maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) models, to test the anticonvulsant activity of the target compounds in vivo. The neurotoxicity (NT) of the target compounds was measured using the rotating rod (ROT) method. Seven compounds with potential activity were selected to test the 50% effective dose (ED50) and 50% toxic dose (TD50). Pharmacological experiments revealed that 6-((5-(pentylthio)-1,3,4-oxadiazol-2-yl)methoxy)-3,4-dihydroquinolin-2(1H)-one (5b) showed the best anticonvulsant activity (MES, ED50 = 8.9 mg/kg; scPTZ, ED50 = 10.2 mg/kg), which was greater than the activities of carbamazepine and ethosuximide. Compound 5b exhibited the most potent binding affinity toward the GABAA receptor (IC50 = 0.11 µM) in the in vitro binding experiments. Compound 5b displayed significant anxiolytic activity at a low dose (1 mg/kg) in the elevated plus maze (EPM) test. The GABA content in rat brains was also investigated, and the results showed that compound 5b might have affected the GABA system. In our molecular docking experiment, compound 5b showed significant interactions with residues present at the benzodiazepine binding site on the GABAA receptor. The structure and physicochemical and pharmacokinetic properties of the target compound were predicted using Discovery Studio 2019 and ChemBioDraw Ultra 14.0. Finally we demonstrated that compound 5b mainly acted on GABAA receptor. Thus the present study has provided potential candidates for further investigation in epilepsy.


Assuntos
Anticonvulsivantes/síntese química , Anticonvulsivantes/farmacologia , Oxidiazóis/síntese química , Oxidiazóis/farmacologia , Receptores de GABA-A/metabolismo , Animais , Anticonvulsivantes/química , Anticonvulsivantes/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Técnicas de Química Sintética , Desenho de Fármacos , Oxidiazóis/química , Oxidiazóis/metabolismo , Ligação Proteica , Ratos
14.
Int J Pharm ; 586: 119541, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32544521

RESUMO

Epidermal growth factor receptor (EGFR) is overexpressed in a wide range of solid tumors. In this study, we exploited a high-affinity EGFR-antagonistic affibody (ZEGFR) coupled to a doxorubicin loaded pegylated liposome (LS-Dox) for concurrent passive and active targeting of EGFR+ A431 tumor cells in vitro and in vivo. The in vitro studies revealed that the Dox liposomes coupled with ZEGFR (AS-Dox) showed a higher Dox uptake than LS-Dox in EGFR+ A431 cells but not in EGFR- B16F10 cells, resulting in a selectively enhanced cytotoxicity. In vivo, AS-Dox confirmed its long circulation time and efficient accumulation in tumors. This targeted chemotherapy achieved greater tumor suppression. Further, this low-dose but effective targeted treatment reduced systemic toxicity such as body weight loss and organ injury demonstrated by H&E staining. Thus, selective targeting of LS-Dox coupled with ZEGFR enhanced antitumor effects and improved systemic safety. These results demonstrated that LS-Dox coupled with ZEGFR might be developed as a potential tool for therapy of EGFR+ tumors.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/análogos & derivados , Terapia de Alvo Molecular , Animais , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Receptores ErbB/antagonistas & inibidores , Humanos , Masculino , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/efeitos adversos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Drug Dev Ind Pharm ; 46(6): 988-995, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32366135

RESUMO

Objective: With the aim of surmounting the severe hepatotoxicity induced by antituberculosis drug isoniazid (INH), a novel cocrystal of INH with hepatoprotective nutraceutical syringic acid (SYA), namely INH-SYA, was designed and prepared through cocrystallization strategy, which is an intriguing attempt to reduce the toxic side effects of INH.Significance: The study not only provides new thinking for inhibiting toxic side effects of drugs through cocrystallization strategy, but also opens a new pathway for the application of nutraceuticals in the pharmacy.Methods: INH and SYA were successfully crystallized into the same crystal lattice through combining volatilization with solvent assisted methods. The resulting cocrystal was structurally characterized by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), and differential scanning calorimetry (DSC).Results: The SCXRD analysis for the present cocrystal revealed that it has a 1:1 ratio of INH to SYA with two molecules INH homodimers and two SYA molecules, in which they are arranged alternately linked by hydrogen bonds to form a six molecules ring structure (R66(40)) in crystal. The systematic evaluation of the in vitro/in vivo suggested that, owing to the formation of cocrystal, the dissolution efficiency of SYA was increased 5.85-fold compared with that of coarse SYA, and the oral bioavailability of the cocrystal in rats was enhanced by 3.66 times. As a result, the present INH-SYA cocrystal almost removed INH induced serious hepatotoxicity, which was further demonstrated by the hepatotoxicity studies in rats.Conclusion: INH-SYA cocrystal could effectively reduce the hepatotoxicity of INH.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Isoniazida/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Cristalização , Ácido Gálico/análogos & derivados , Ácido Gálico/química , Ratos
16.
RSC Adv ; 10(51): 30848-30857, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516063

RESUMO

In this study, two series of 1,3,4-oxadiazole derivatives were designed and synthesized using the forced swimming test (FST) model to test the antidepressant activity of the target compound in vivo. Five compounds with potential activity were selected from the FST model to test affinity with 5-HT1A receptor in vitro. The results of the FST experiment showed that compound N-(3-((5-((4-chlorobenzyl)thio)-1,3,4-oxadiazol-2-yl)methoxy)phenyl)acetamide (10g) showed the best antidepressant activity (DID = 58.93, percentage decrease in immobility duration in FST), similar to the activity of positive drug fluoxetine. Compound 10g also exhibited the most potent binding affinity to 5-HT1A receptors (K i = 1.52 nM). The results of the in vivo 5-HT concentration estimation in mice showed that compound 10g may have an effect on the brain. The experimental results of exploratory activity in mice showed that compound 10g did not affect spontaneous activity in the open-field test model. Molecular docking was used to study the binding mode of compound 10g and the 5-HT1A receptor. Compound 10g showed significant interactions with residues at the active site on the 5-HT1A receptor. The physicochemical and pharmacokinetic properties of the target compounds were predicted using Discovery Studio 2019 and ChemBioDraw Ultra 14.

17.
Pharmacol Rep ; 71(6): 1244-1252, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31670061

RESUMO

BACKGROUND: Coumarin and 3,4-dihydroquinolinone nuclei are two heterocyclic rings that are important and widely exploited for the development of bioactive molecules. Here, we designed and synthesized a series of 3,4-dihydroquinolinone and coumarin derivatives (Compounds 8, 9, 11, 14, 15, 18-20, 23, 24 and 28 are new compounds) and studied their antidepressant activities. METHODS: Forced swimming test (FST) and tail suspension test (TST) were used to evaluate the antidepressant activity of the target compounds. The most active compound was used to evaluate the exploratory activity of the animals by the open-field test. 5-HT concentration was estimated to evaluate if the compound has an effect on the mouse brain, by using ELISA. A 5-HT1A binding assay was also performed. The biological activities of the compounds were verified by molecular docking studies. The physicochemical and pharmacokinetic properties of the target compounds were predicted by Discovery Studio and ChemBioDraw Ultra. RESULTS: Of all the compounds tested, compound 7 showed the best antidepressant activity, which decreased the immobility time by 65.52 s in FST. However, in the open-field test, compound 7 did not affect spontaneous activity. The results of 5-HT concentration estimation in vivo showed that compound 7 may have an effect on the mouse brain. Molecular docking results indicated that compound 7 showed significant interactions with residues at the 5-HT1A receptor using homology modeling. The results show that compound 7 exhibits good affinity for the 5-HT1A receptor. CONCLUSION: Coumarin and 3,4-dihydroquinolinone derivatives synthesized in this study have a significant antidepressant activity. These findings can be useful in the design and synthesis of novel antidepressants.


Assuntos
Antidepressivos/química , Antidepressivos/farmacologia , Cumarínicos/química , Cumarínicos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Elevação dos Membros Posteriores/fisiologia , Camundongos , Simulação de Acoplamento Molecular/métodos , Relação Estrutura-Atividade , Natação/fisiologia
18.
Eur J Med Chem ; 179: 667-679, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31279299

RESUMO

Ovarian cancer is associated with a high percentage of recurrence of tumors and resistance to chemotherapy. Cancer stem cells (CSCs) are responsible for cancer progression, tumor recurrence, metastasis, and chemoresistance. Thus, developing CSC-targeting therapy is an urgent need in cancer research and clinical application. In an attempt to achieve potent and selective anti-CSC agents, a series of celastrol derivatives with cinnamamide chains were synthesized and evaluated for their anti-ovarian cancer activities. Most of the compounds exhibited stronger antiproliferative activity than celastrol, and celastrol derivative 7g with a 3,4,5-trimethoxycinnamamide side chain was found to be the most potent antiproliferative agent against ovarian cancer cells with an IC50 value of 0.6 µM. Additionally, compound 7g significantly inhibited the colony formation ability and reduced the number of tumor spheres. Furthermore, compound 7g decreased the percentage of CD44+, CD133+ and ALDH+ cells. Thus, compound 7g is a promising anti-CSC agent and could serve as a candidate for the development of new anti-ovarian cancer drugs.


Assuntos
Antineoplásicos/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Triterpenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Neoplasias Ovarianas/patologia , Triterpenos Pentacíclicos , Relação Estrutura-Atividade , Triterpenos/síntese química , Triterpenos/química , Cicatrização/efeitos dos fármacos
19.
Rice (N Y) ; 12(1): 19, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30923923

RESUMO

BACKGROUND: Cytokinins are one of the five major hormones families in plants and are important for their normal growth and environmental adaptability. In plants, cytokinins are mostly present as glycosides in plants, and their glycosylation modifications are catalyzed by family 1 glycosyltransferases. Current research on cytokinin glycosylation has focused on the biochemical identification of enzymes and the analysis of metabolites in Arabidopsis. There are few studies that examine how cytokinin glycosylation affects its synthesis and accumulation in plants. It is particularly important to understand these processes in food crops such as rice (Oryza sativa); however, to date, cytokinin glycosyltransferase genes in rice have not been reported. RESULTS: In this study, we identified eight rice genes that were functionally homologous to an Arabidopsis cytokinin glycosyltransferase gene. These genes were cloned and expressed in a prokaryotic system to obtain their purified proteins. Through enzymatic analysis and liquid chromatography-mass spectrometry, a single rice glycosyltransferase, Os6, was identified that glycosylated cytokinin in vitro. Os6 was overexpressed in Arabidopsis, and the extraction of cytokinin glycosides showed that Os6 is functionally active in planta. CONCLUSIONS: The identification and characterization of the first cytokinin glycosyltransferase from rice is important for future studies on the cytokinin metabolic pathway in rice. An improved understanding of rice cytokinin glycosyltransferases may facilitate genetic improvements in rice quality.

20.
RSC Adv ; 9(52): 30125-30133, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-35530204

RESUMO

In this study, a novel magnetic composite (Fe3O4@CS/GO/Ag) modified with chitosan (CS), graphene oxide (GO) and Ag nanoparticles (Ag NPs) was successfully prepared as an efficient adsorbent for detection of rhodamine B (RB) combined with a fluorescence technique. The properties of the magnetic composite were confirmed by field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and vibrating sample magnetometry. The components of Fe3O4@CS/GO/Ag endowed it with excellent extraction performance and convenient operation. The main parameters affecting extraction and desorption efficiency were all investigated systematically. Under the optimized experimental conditions, the proposed method showed linear ranges (0.2-6.0 µg L-1) with R 2 = 0.9992. The limits of detection (LODs) and quantification (LOQs) were 0.05 and 0.2 µg L-1 (n = 3), respectively. Fe3O4@CS/GO/Ag exhibited outstanding extraction efficiency for RB, compared with CS-coated Fe3O4 nanoparticles (Fe3O4@CS) and GO-modified Fe3O4@CS (Fe3O4@CS/GO). The applicability of the proposed method was investigated by analyzing four real samples (waste water, soft drink, shampoo, and red pencil) and the spiked recoveries ranged between 94% and 97% with RSD ranging from 3% to 6%, which showed that the proposed method had satisfactory practicability and operability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...