Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ISME J ; 17(2): 252-262, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36357781

RESUMO

Cyanopodoviruses affect the mortality and population dynamics of the unicellular picocyanobacteria Prochlorococcus and Synechococcus, the dominant primary producers in the oceans. Known cyanopodoviruses all contain the DNA polymerase gene (DNA pol) that is important for phage DNA replication and widely used in field quantification and diversity studies. However, we isolated 18 cyanopodoviruses without identifiable DNA pol. They form a new MPP-C clade that was separated from the existing MPP-A, MPP-B, and P-RSP2 clades. The MPP-C phages have the smallest genomes (37.3-37.9 kb) among sequenced cyanophages, and show longer latent periods than the MPP-B phages. Metagenomic reads of both clades are highly abundant in surface waters, but the MPP-C phages show higher relative abundance in surface waters than in deeper waters, while MPP-B phages have higher relative abundance in deeper waters. Our study reveals that cyanophages with distinct genomic contents and infection kinetics can exhibit different depth profiles in the oceans.


Assuntos
Bacteriófagos , Synechococcus , DNA Polimerase Dirigida por DNA/genética , Oceanos e Mares , Filogenia , Synechococcus/virologia
3.
ACS Appl Mater Interfaces ; 13(12): 13968-13977, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33739810

RESUMO

Oxidative stress plays an important role in Parkinson's disease (PD) and is considered a therapeutic target for PD. However, most therapeutic antioxidants show limitations due to their low reactive oxygen species (ROS) catalytic properties and low crossing of blood-brain barrier. Herein, the antioxidative activity of Yb3+ and Er3+ double-doped CeO2-x (Yb/Er/CeO2-x) upconversion nanoparticles (UCNPs) is obtained for PD treatment. Doping of Yb3+ and Er3+ ions increases oxygen vacancies, which leads to higher enzymelike catalytic activities compared to CeO2-x nanoparticles alone. Tyrosine hydroxylase protein and glial fibrillary acidic protein expression in substantia nigra and striatum as well as the open-field activity test indicates that Yb/Er/CeO2-x is effective for treatment of PD. The activities of glutathione peroxidase and total antioxidant capacity increase and the production of ROS decreases with Yb/Er/CeO2-x UCNP treatment compared with MPTP-induced injury. This indicates that the mechanism of PD treatment is to catalyze ROS products. There have been no reports to date on the usage of Yb/Er/CeO2-x as an antioxidant for PD treatment. Yb/Er/CeO2-x UCNPs cross the blood-brain barrier and exhibit biocompatibility and antioxidant catalytic properties, which decrease the ROS and effectively help in treating PD.


Assuntos
Antioxidantes/uso terapêutico , Cério/uso terapêutico , Érbio/uso terapêutico , Nanopartículas/uso terapêutico , Doença de Parkinson/terapia , Itérbio/uso terapêutico , Animais , Antioxidantes/química , Cério/química , Modelos Animais de Doenças , Érbio/química , Érbio/farmacologia , Luminescência , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanopartículas/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Itérbio/química , Itérbio/farmacologia
4.
mSystems ; 5(2)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234774

RESUMO

Prochlorococcus cyanobacteria grow in diurnal rhythms driven by diel cycles. Their ecology depends on light, nutrients, and top-down mortality processes, including lysis by viruses. Cyanophage, viruses that infect cyanobacteria, are also impacted by light. For example, the extracellular viability and intracellular infection kinetics of some cyanophage vary between light and dark conditions. Nonetheless, it remains unclear whether light-dependent viral life history traits scale up to influence population-level dynamics. Here, we examined the impact of diel forcing on both cellular- and population-scale dynamics in multiple Prochlorococcus-phage systems. To do so, we developed a light-driven population model, including both cellular growth and viral infection dynamics. We then tested the model against measurements of experimental infection dynamics with diel forcing to examine the extent to which population level changes in both viral and host abundances could be explained by light-dependent life history traits. Model-data integration reveals that light-dependent adsorption can improve fits to population dynamics for some virus-host pairs. However, light-dependent variation alone does not fully explain realized host and virus population dynamics. Instead, we show evidence consistent with lysis saturation at relatively high virus-to-cell ratios. Altogether, our study represents a quantitative approach to integrate mechanistic models to reconcile Prochlorococcus-virus dynamics spanning cellular-to-population scales.IMPORTANCE The cyanobacterium Prochlorococcus is an essential member of global ocean ecosystems. Light rhythms drive Prochlorococcus photosynthesis, ecology, and interactions with potentially lethal viruses. At present, the impact of light on Prochlorococcus-virus interactions is not well understood. Here, we analyzed Prochlorococcus and virus population dynamics with a light-driven population model and compared our results with experimental data. Our approach revealed that light profoundly drives both cellular- and population-level dynamics for some host-virus systems. However, we also found that additional mechanisms, including lysis saturation, are required to explain observed host-virus dynamics at the population scale. This study provides the basis for future work to understand the intertwined fates of Prochlorococcus and associated viruses in the surface ocean.

5.
Proc Natl Acad Sci U S A ; 116(28): 14077-14082, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235591

RESUMO

As an adaptation to the daily light-dark (diel) cycle, cyanobacteria exhibit diurnal rhythms of gene expression and cell cycle. The light-dark cycle also affects the life cycle of viruses (cyanophages) that infect the unicellular picocyanobacteria Prochlorococcus and Synechococcus, which are the major primary producers in the oceans. For example, the adsorption of some cyanophages to the host cells depends on light, and the burst sizes of cyanophages are positively correlated to the length of light exposure during infection. Recent metatranscriptomic studies revealed transcriptional rhythms of field cyanophage populations. However, the underlying mechanism remains to be determined, as cyanophage laboratory cultures have not been shown to exhibit diurnal transcriptional rhythms. Here, we studied variation in infection patterns and gene expression of Prochlorococcus phages in laboratory culture conditions as a function of light. We found three distinct diel-dependent life history traits in dark conditions (diel traits): no adsorption (cyanophage P-HM2), adsorption but no replication (cyanophage P-SSM2), and replication (cyanophage P-SSP7). Under light-dark cycles, each cyanophage exhibited rhythmic transcript abundance, and cyanophages P-HM2 and P-SSM2 also exhibited rhythmic adsorption patterns. Finally, we show evidence to link the diurnal transcriptional rhythm of cyanophages to the photosynthetic activity of the host, thus providing a mechanistic explanation for the field observations of cyanophage transcriptional rhythms. Our study identifies that cultured viruses can exhibit diurnal rhythms during infection, which might impact cyanophage population-level dynamics in the oceans.


Assuntos
Bacteriófagos/genética , Ritmo Circadiano/genética , Viroses/genética , Replicação Viral/genética , Bacteriófagos/patogenicidade , Bacteriófagos/fisiologia , Ritmo Circadiano/fisiologia , Regulação Viral da Expressão Gênica/genética , Interações Hospedeiro-Patógeno/genética , Luz , Fotoperíodo , Fotossíntese/genética , Prochlorococcus/genética , Prochlorococcus/virologia , Synechococcus/genética , Synechococcus/virologia
6.
Environ Microbiol ; 21(6): 2015-2028, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30585375

RESUMO

Viral infection of marine phytoplankton releases a variety of dissolved organic matter (DOM). The impact of viral DOM (vDOM) on the uninfected co-occurring phytoplankton remains largely unknown. Here, we conducted transcriptomic analyses to study the effects of vDOM on the cyanobacterium Prochlorococcus, which is the most abundant photosynthetic organism on Earth. Using Prochlorococcus MIT9313, we showed that its growth was not affected by vDOM, but many tRNAs increased in abundance. We tested tRNA-gly and found that its abundance increased upon addition of glycine. The decreased transcript abundances of N metabolism genes also suggested that Prochlorococcus responded to organic N compounds in vDOM. Addition of vDOM to Prochlorococcus reduced the maximum photochemical efficiency of photosystem II and CO2 fixation while increasing its respiration rate, consistent with differentially abundant transcripts related to photosynthesis and respiration. One of the highest positive fold-changes was observed for the 6S RNA, a noncoding RNA functioning as a global transcriptional regulator in bacteria. The high level of 6S RNA might be responsible for some of the observed transcriptional responses. Taken together, our results revealed the transcriptional regulation of Prochlorococcus in response to viral lysis products and suggested its metabolic potential to utilize organic N compounds.


Assuntos
Prochlorococcus/genética , Prochlorococcus/virologia , Fenômenos Fisiológicos Virais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Fitoplâncton/genética , Fitoplâncton/metabolismo , Fitoplâncton/virologia , Prochlorococcus/metabolismo , Água do Mar/microbiologia , Transcriptoma , Vírus/genética
7.
mBio ; 8(6)2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162705

RESUMO

Superresolution imaging has revealed subcellular structures and protein interactions in many organisms. However, superresolution microscopy with lateral resolution better than 100 nm has not been achieved in photosynthetic cells due to the interference of a high-autofluorescence background. Here, we developed a photobleaching method to effectively reduce the autofluorescence of cyanobacterial and plant cells. We achieved lateral resolution of ~10 nm with stochastic optical reconstruction microscopy (STORM) in the sphere-shaped cyanobacterium Prochlorococcus and the flowering plant Arabidopsis thaliana During the cell cycle of Prochlorococcus, we characterized the three-dimensional (3D) organization of the cell division protein FtsZ, which forms a ring structure at the division site and is important for cytokinesis of bacteria and chloroplasts. Although the FtsZ ring assembly process in rod-shaped bacteria has been studied extensively, it has rarely been studied in sphere-shaped bacteria. Similarly to rod-shaped bacteria, our results with Prochlorococcus also showed the assembly of FtsZ clusters into incomplete rings and then complete rings during cell division. Differently from rod-shaped bacteria, the FtsZ ring diameter was not found to decrease during Prochlorococcus cell division. We also discovered a novel double-Z-ring structure, which may be the Z rings of two daughter cells in a predivisional mother cell. Our results showed a quantitative picture of the in vivo Z ring organization of sphere-shaped bacteria.IMPORTANCE Superresolution microscopy has not been widely used to study photosynthetic cells due to their high-autofluorescence background. Here, we developed a photobleaching method to reduce the autofluorescence of cyanobacteria and plant cells. After photobleaching, we performed superresolution imaging in the cyanobacterium Prochlorococcus and the flowering plant Arabidopsis thaliana with ~10-nm resolution, which is the highest resolution in a photosynthetic cell. With this method, we characterized the 3D organization of the cell division protein FtsZ in Prochlorococcus We found that the morphological variation of the FtsZ ring during cell division of the sphere-shaped cyanobacterium Prochlorococcus is similar but not identical to that of rod-shaped bacteria. Our method might also be applicable to other photosynthetic organisms.


Assuntos
Proteínas de Bactérias/química , Divisão Celular , Proteínas do Citoesqueleto/química , Imageamento Tridimensional/métodos , Proteínas de Arabidopsis/química , Ciclo Celular , Proteínas do Citoesqueleto/metabolismo , Microscopia de Fluorescência/métodos , Fotodegradação , Prochlorococcus/química , Prochlorococcus/fisiologia
8.
Pest Manag Sci ; 70(6): 895-904, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24254471

RESUMO

BACKGROUND: Direct application of insect cadavers infected with entomopathogenic nematodes (EPN) can successfully control target pest insects. Little is known about the effects of environmental factors (desiccation and temperature) on the production process for infective juveniles (IJ) in insects. RESULTS: We examined the effects of desiccation time and cold storage (6.7 °C) on IJ production of the nematode Steinernema carpocapsae in Galleria mellonella cadavers at 30.8 and 57% humidity. Under desiccation, the IJ yield in cadavers increased gradually and reached a maximum on day 5. IJ yield gradually declined from day 6 onwards and was almost zero by day 15. In general, cold storage at 6.7 °C caused negative effects on IJ production in desiccated cadavers. Approximately 56 h post infection was the time at which nematodes were most sensitive to low temperatures during development in cadavers. Five-day desiccated cadavers generated higher mortality and more rapid death of Galleria mellonella larvae than using newly (day 0) desiccated cadavers. CONCLUSION: This study describe methods of optimizing rearing techniques such as desiccation and cold storage to promote the mass production and application of EPN- infected host cadavers for the field control of insect pests.


Assuntos
Controle Biológico de Vetores/métodos , Rabditídios/crescimento & desenvolvimento , Animais , Temperatura Baixa , Dessecação , Larva/crescimento & desenvolvimento , Mariposas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA