Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; PP2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843061

RESUMO

Stability maintenance in systems refers to the capacity to preserve inherent stability characteristics. In this article, stability maintenance of large boolean networks (BNs) subjected to perturbations is investigated using a distributed pinning control (PC) strategy. The concept of edge removal as a form of perturbation is introduced, and several criteria for achieving global stability are established. Two forms of distributed PCs, one implemented before perturbation occurs and the other after, are introduced. It is noteworthy that the designs of the controllers are solely dependent on the system's in-neighbors. The proposed method significantly decreases the computational complexity, reducing it from O(22|V|) to O(|V|+ |E| + κ·2K) , where |V|, |E| denotes the cardinality of vertices and arcs of the adjacent graph of BN, κ is the number of the pinning nodes, and K represents the maximum in-degree of the network. In the worst-case scenario, the computational complexity is bounded by O(|V|+ |E| + κ·2|V|) . To validate the effectiveness of the proposed methods, results from multiple gene networks are presented, including a model representing the human rheumatoid arthritis synovial fibroblast, among which only 12 of the 359 nodes are deemed essential.

2.
Sci Total Environ ; 919: 170790, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38331279

RESUMO

The combined pollution of lead (Pb) and polystyrene microplastics (PS-MPs) is common in aquatic environments. However, the combined neurotoxicity of these two pollutants is still poorly understood. In this study, zebrafish (Danio rerio) larvae were used to assess the combined neurotoxicity and mechanism of Pb and PS-MPs at environmentally relevant concentrations. The results showed that Pb (10 µg/L) induced abnormal behavior including significantly reduced movement distance, maximum acceleration, and average velocity (P < 0.05) along with altered expression of neurodevelopment-related genes (gap43 and α1-tubulin) (P < 0.05). PS-MPs (25 µg/L, 250 µg/L; diameter at 25 µm) co-exposure not only significantly reduced the concentration of Pb in the exposed solution (P < 0.01), but also decreased the uptake of Pb by downregulating the divalent metal transporter 1 gene (dmt1) (P < 0.01), thereby alleviating Pb-induced neurotoxicity. However, to demonstrate that PS-MPs alleviate the neurotoxicity of Pb by reducing Pb uptake, upregulation of dmt1 by addition of deferoxamine (DFO, an efficient iron chelator, 100 µM) significantly increased the Pb uptake and exacerbated neurotoxicity in zebrafish. In summary, our results demonstrated that PS-MPs alleviate Pb neurotoxicity by downregulating the mRNA level of dmt1 and decreasing the Pb uptake. This study provides a new insight into the combined neurotoxicity and underlying mechanisms of PS-MPs and Pb on zebrafish.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/toxicidade , Peixe-Zebra/fisiologia , Chumbo/toxicidade , Chumbo/metabolismo , Larva/metabolismo , Metais Pesados/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
3.
Environ Sci Technol ; 56(19): 13878-13887, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36106461

RESUMO

Previous studies have reported the feminizing effects of 2,4-dichlorophenol (2,4-DCP) on zebrafish (Danio rerio). However, the effect of 2,4-DCP on the number of primordial germ cells (PGCs), an indicator for early sex differentiation, remains elusive. In the present study, Tg (piwil1:egfp-UTR nanos3) zebrafish (GFP-labeled PGCs) were treated with 2,4-DCP (10, 20, and 40 µg/L) from 5 to 15 days postfertilization to explore the effect on PGC numbers and to elucidate associated molecular mechanisms. The results showed that 2,4-DCP exposure increased PGC numbers, as evidenced by larger GFP fluorescent areas, upregulated expressions of PGC marker genes (vasa and dnd), and raised the female ratio. Notably, the mRNA level of estrogen receptor 2a (esr2a) was also increased subsequently. Moreover, docking studies revealed stable 2,4-DCP interactions with ESR2a, speculating a role of ESR2a signaling pathway in 2,4-DCP toxicity. Furthermore, in esr2a knockout (esr2a-/-) zebrafish, the effects of 2,4-DCP were considerably minimized, proving the involvement of the ESR2a signaling pathway in the 2,4-DCP-mediated increase in PGC numbers. Dual-luciferase reporter gene assay and point mutation studies demonstrated that 2,4-DCP-stimulated promoter activity was mediated by estrogen response element (ERE) located in -686/-674 of the vasa promoter and -731/-719 of the dnd promoter. Overall, 2,4-DCP can potentially enhance the expression of vasa and dnd by binding to zebrafish ESR2a, thus leading to increased PGC numbers and subsequent female-biased sex differentiation.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Contagem de Células , Clorofenóis , Estrogênios/metabolismo , Feminino , Células Germinativas/metabolismo , Larva/metabolismo , RNA Mensageiro/metabolismo , Receptores de Estrogênio/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
4.
Biomedicines ; 10(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35052781

RESUMO

The striatum contains several types of neurons including medium spiny projection neurons (MSNs), cholinergic interneurons (ChIs), and fast-spiking interneurons (FSIs). Modulating the activity of these neurons by the dopamine D2 receptor (D2R) can greatly impact motor control and movement disorders. D2R exists in two isoforms: D2L and D2S. Here, we assessed whether alterations in the D2L and D2S expression levels affect neuronal excitability and synaptic function in striatal neurons. We observed that quinpirole inhibited the firing rate of all three types of striatal neurons in wild-type (WT) mice. However, in D2L knockout (KO) mice, quinpirole enhanced the excitability of ChIs, lost influence on spike firing of MSNs, and remained inhibitory effect on spike firing of FSIs. Additionally, we showed mIPSC frequency (but not mIPSC amplitude) was reduced in ChIs from D2L KO mice compared with WT mice, suggesting spontaneous GABA release is reduced at GABAergic terminals onto ChIs in D2L KO mice. Furthermore, we found D2L deficiency resulted in reduced dendritic spine density in ChIs, suggesting D2L activation plays a role in the formation/maintenance of dendritic spines of ChIs. These findings suggest new molecular and cellular mechanisms for causing ChIs abnormality seen in Parkinson's disease or drug-induced dyskinesias.

5.
Aquat Toxicol ; 236: 105868, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34051627

RESUMO

2,4-Dichlorophenol (2,4-DCP), an estrogenic endocrine disruptor, is widely spread in aquatic environments and may interfere with normal physiological functions in fish. However, the influence of this chemical on the synthesis of sex hormones is not well understood. In the present study, zebrafish (Danio rerio) were exposed to 2,4-DCP (80 and 160 µg/L) with or without fadrozole (an aromatase inhibitor which inhibits the synthesis of estradiol) from 20 to 40 days post fertilization. Then, the sex ratio, the content of vitellogenin (VTG) and sex hormones (androstenedione (ASD), estrone (E1), 17ß-estradiol (E2), estriol (E3), testosterone (T) and 11-ketotestosterone (11-KT)) were studied. Furthermore, the expression of genes involved in synthesis of sex hormones (cyp19a1a, cyp19a1b, 17ß-hsd, 11ß-hsd and cyp11b) along with the DNA methylation in cyp19a1a and cyp19a1b promoters was analyzed. The results showed that 2,4-DCP exposure led to female-biased ratio, increased the content of ASD, E2 and VTG, as well as the ratio of E2/11-KT, while decreased the levels of androgens (T and 11-KT). The sex hormonal change can be explained by the significant up-regulation of cyp19a1a, cyp19a1b, 17ß-hsd and 11ß-hsd genes. In addition, hypomethylation of cyp19a1a promoter was involved in this process. Notably, fadrozole can partly attenuate 2,4-DCP-induced feminization, and recover the levels of ASD, E2 and 11-KT. Thus, these results demonstrate that 2,4-DCP induces feminization in fish by disrupting the synthesis of sex hormones.


Assuntos
Clorofenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Inibidores da Aromatase , Metilação de DNA/efeitos dos fármacos , Disruptores Endócrinos , Estradiol , Estrogênios/farmacologia , Fadrozol , Feminino , Feminização/genética , Hormônios Esteroides Gonadais , Humanos , Masculino , Fenóis , Razão de Masculinidade , Vitelogeninas/metabolismo , Peixe-Zebra/metabolismo
6.
Am J Psychiatry ; 178(1): 48-64, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32539528

RESUMO

OBJECTIVE: Pediatric obsessive-compulsive disorder (OCD) sometimes appears rapidly, even overnight, often after an infection. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections, or PANDAS, describes such a situation after infection with Streptococcus pyogenes. PANDAS may result from induced autoimmunity against brain antigens, although this remains unproven. Pilot work suggests that IgG antibodies from children with PANDAS bind to cholinergic interneurons (CINs) in the striatum. CIN deficiency has been independently associated with tics in humans and with repetitive behavioral pathology in mice, making it a plausible locus of pathology. The authors sought to replicate and extend earlier work and to investigate the cellular effects of PANDAS antibodies on cholinergic interneurons. METHODS: Binding of IgG to specific neurons in human and mouse brain slices was evaluated ex vivo after incubation with serum from 27 children with rigorously characterized PANDAS, both at baseline and after intravenous immunoglobulin (IVIG) treatment, and 23 matched control subjects. Binding was correlated with symptom measures. Neural activity after serum incubation was assessed in mouse slices using molecular markers and electrophysiological recording. RESULTS: IgG from children with PANDAS bound to CINs, but not to several other neuron types, more than IgG from control subjects, in three independent cohorts of patients. Post-IVIG serum had reduced IgG binding to CINs, and this reduction correlated with symptom improvement. Baseline PANDAS sera decreased activity of striatal CINs, but not of parvalbumin-expressing GABAergic interneurons, and altered their electrophysiological responses, in acute mouse brain slices. Post-IVIG PANDAS sera and IgG-depleted baseline sera did not alter the activity of striatal CINs. CONCLUSIONS: These findings provide strong evidence for striatal CINs as a critical cellular target that may contribute to pathophysiology in children with rapid-onset OCD symptoms, and perhaps in other conditions.


Assuntos
Autoanticorpos/imunologia , Doenças Autoimunes/imunologia , Neurônios Colinérgicos/imunologia , Corpo Estriado/imunologia , Transtorno Obsessivo-Compulsivo/imunologia , Infecções Estreptocócicas/imunologia , Animais , Doenças Autoimunes/complicações , Estudos de Casos e Controles , Criança , Pré-Escolar , Neurônios Colinérgicos/fisiologia , Corpo Estriado/fisiopatologia , Feminino , Humanos , Imunoglobulina G/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtorno Obsessivo-Compulsivo/complicações , Transtorno Obsessivo-Compulsivo/etiologia , Infecções Estreptocócicas/complicações
7.
Mol Psychiatry ; 26(9): 5097-5111, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32488125

RESUMO

Both the NMDA receptor (NMDAR) positive allosteric modulator (PAM), and antagonist, can exert rapid antidepressant effects as shown in several animal and human studies. However, how this bidirectional modulation of NMDARs causes similar antidepressant effects remains unknown. Notably, the initial cellular trigger, specific cell-type(s), and subunit(s) of NMDARs mediating the antidepressant-like effects of a PAM or an antagonist have not been identified. Here, we used electrophysiology, microdialysis, and NMR spectroscopy to evaluate the effect of a NMDAR PAM (rapastinel) or NMDAR antagonist, ketamine on NMDAR function and disinhibition-mediated glutamate release. Further, we used cell-type specific knockdown (KD), pharmacological, and behavioral approaches to dissect the cell-type specific role of GluN2B, GluN2A, and dopamine receptor subunits in the actions of NMDAR PAM vs. antagonists. We demonstrate that rapastinel directly enhances NMDAR activity on principal glutamatergic neurons in medial prefrontal cortex (mPFC) without any effect on glutamate efflux, while ketamine blocks NMDAR on GABA interneurons to cause glutamate efflux and indirect activation of excitatory synapses. Behavioral studies using cell-type-specific KD in mPFC demonstrate that NMDAR-GluN2B KD on Camk2a- but not Gad1-expressing neurons blocks the antidepressant effects of rapastinel. In contrast, GluN2B KD on Gad1- but not Camk2a-expressing neurons blocks the actions of ketamine. The results also demonstrate that Drd1-expressing pyramidal neurons in mPFC mediate the rapid antidepressant actions of ketamine and rapastinel. Together, these results demonstrate unique initial cellular triggers as well as converging effects on Drd1-pyramidal cell signaling that underlie the antidepressant actions of NMDAR-positive modulation vs. NMDAR blockade.


Assuntos
Ketamina , Receptores de N-Metil-D-Aspartato , Animais , Antidepressivos/farmacologia , Humanos , Interneurônios/metabolismo , Ketamina/farmacologia , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
8.
IEEE Trans Cybern ; 51(1): 373-381, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31647451

RESUMO

The stabilization problem of Boolean control networks (BCNs) under pinning control is investigated in this article, and the set of pinned nodes is minimized. A BCN is a Boolean network with Boolean control inputs in it. When the given BCNs cannot realize stabilization under existing Boolean control inputs, pinning control strategy is introduced to make the BCNs achieve stabilization. The Warshall algorithm is introduced to verify the stabilizability of BCNs, then novel computational feasible algorithms are developed to design the minimum number pinning controller for the system. By using our method, the minimum set of pinned nodes can be found with relatively low computational complexity. Finally, the theoretical result is validated using a biological example.

9.
Neuropsychopharmacology ; 46(4): 799-808, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33059355

RESUMO

Dysregulation of the glutamatergic system and its receptors in medial prefrontal cortex (mPFC) has been implicated in major depressive disorder. Recent preclinical studies have shown that enhancing NMDA receptor (NMDAR) activity can exert rapid antidepressant-like effects. AGN-241751, an NMDAR positive allosteric modulator (PAM), is currently being tested as an antidepressant in clinical trials, but the mechanism and NMDAR subunit(s) mediating its antidepressant-like effects are unknown. We therefore used molecular, biochemical, and electrophysiological approaches to examine the cell-type-specific role of GluN2B-containing NMDAR in mediating antidepressant-like behavioral effects of AGN-241751. We demonstrate that AGN-241751 exerts antidepressant-like effects and reverses behavioral deficits induced by chronic unpredictable stress in mice. AGN-241751 treatment enhances NMDAR activity of excitatory and parvalbumin-inhibitory neurons in mPFC, activates Akt/mTOR signaling, and increases levels of synaptic proteins crucial for synaptic plasticity in the prefrontal cortex. Furthermore, cell-type-specific knockdown of GluN2B-containing NMDARs in mPFC demonstrates that GluN2B subunits on excitatory, but not inhibitory, neurons are necessary for antidepressant-like effects of AGN-241751. Together, these results demonstrate antidepressant-like actions of the NMDAR PAM AGN-241751 and identify GluN2B on excitatory neurons of mPFC as initial cellular trigger underlying these behavioral effects.


Assuntos
Transtorno Depressivo Maior , Receptores de N-Metil-D-Aspartato , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Camundongos , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
10.
Neuropsychopharmacology ; 45(10): 1725-1734, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32396921

RESUMO

We previously reported that the serotonergic system is important for the antidepressant-like effects of ketamine, a non-competitive N-methyl-D-aspartate receptor antagonist, which produces rapid and long-lasting antidepressant effects in patients with major depressive disorder (MDD). In particular, selective stimulation of the 5-HT1A receptor in the medial prefrontal cortex (mPFC), as opposed to the somatic 5-HT1A autoreceptor, has been shown to play a critical role in the antidepressant-like actions of ketamine. However, the detailed mechanisms underlying mPFC 5-HT1A receptor-mediated antidepressant-like effects are not fully understood. Here we examined the involvement of the glutamate AMPA receptor and brain-derived neurotrophic factor (BDNF) in the antidepressant-like effects of 5-HT1A receptor activation in the mPFC. The results show that intra-mPFC infusion of the 5-HT1A receptor agonist 8-OH-DPAT induces rapid and long-lasting antidepressant-like effects in the forced swim, novelty-suppressed feeding, female urine sniffing, and chronic unpredictable stress tests. In addition, the results demonstrate that the antidepressant-like effects of intra-mPFC infusion of 8-OH-DPAT are blocked by co-infusion of an AMPA receptor antagonist or an anti-BDNF neutralizing antibody. In addition, mPFC infusion of 8-OH-DPAT increased the phosphorylation of signaling proteins downstream of BDNF, including mTOR, ERK, 4EBP1, and p70S6K. Finally, selective stimulation of the 5-HT1A receptor increased levels of synaptic proteins and synaptic function in the mPFC. Collectively, these results indicate that selective stimulation of 5-HT1A receptor in the mPFC exerts rapid and sustained antidepressant-like effects via activation of AMPA receptor/BDNF/mTOR signaling in mice, which subsequently increase synaptic function in the mPFC, and provide evidence for the 5-HT1A receptor as a target for the treatment of MDD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Transtorno Depressivo Maior , Animais , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Feminino , Humanos , Camundongos , Córtex Pré-Frontal/metabolismo , Receptor 5-HT1A de Serotonina , Receptores de AMPA
11.
IEEE Trans Neural Netw Learn Syst ; 31(6): 2129-2139, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31403445

RESUMO

In this paper, the output feedback set stabilization problem for Boolean control networks (BCNs) is investigated with the help of the semi-tensor product (STP) tool. The concept of output feedback control invariant (OFCI) subset is introduced, and novel methods are developed to obtain the OFCI subsets. Based on the OFCI subsets, a technique, named spanning tree method, is further introduced to calculate all possible output feedback set stabilizers. An example concerning lac operon for the bacterium Escherichia coli is given to illustrate the effectiveness of the proposed method. This technique can also be used to solve the state feedback (set) stabilization problem for BCNs. Compared with the existing results, our method can dramatically reduce the computational cost when designing all possible state feedback stabilizers for BCNs.

12.
J Clin Invest ; 130(3): 1336-1349, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31743111

RESUMO

A single subanesthetic dose of ketamine, an NMDA receptor (NMDAR) antagonist, produces rapid and sustained antidepressant actions in depressed patients, addressing a major unmet need for the treatment of mood disorders. Ketamine produces a rapid increase in extracellular glutamate and synaptic formation in the prefrontal cortex, but the initial cellular trigger that initiates this increase and ketamine's behavioral actions has not been identified. To address this question, we used a combination of viral shRNA and conditional mutation to produce cell-specific knockdown or deletion of a key NMDAR subunit, GluN2B, implicated in the actions of ketamine. The results demonstrated that the antidepressant actions of ketamine were blocked by GluN2B-NMDAR knockdown on GABA (Gad1) interneurons, as well as subtypes expressing somatostatin (Sst) or parvalbumin (Pvalb), but not glutamate principle neurons in the medial prefrontal cortex (mPFC). Further analysis of GABA subtypes showed that cell-specific knockdown or deletion of GluN2B in Sst interneurons blocked or occluded the antidepressant actions of ketamine and revealed sex-specific differences that are associated with excitatory postsynaptic currents on mPFC principle neurons. These findings demonstrate that GluN2B-NMDARs on GABA interneurons are the initial cellular trigger for the rapid antidepressant actions of ketamine and show sex-specific adaptive mechanisms to GluN2B modulation.


Assuntos
Antidepressivos/farmacologia , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Ketamina/farmacologia , Caracteres Sexuais , Animais , Feminino , Neurônios GABAérgicos/patologia , Técnicas de Inativação de Genes , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Interneurônios/patologia , Masculino , Camundongos , Camundongos Transgênicos , Parvalbuminas/genética , Parvalbuminas/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
13.
Neurobiol Dis ; 134: 104669, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31707118

RESUMO

Dysfunction of medial prefrontal cortex (mPFC) in association with imbalance of inhibitory and excitatory neurotransmission has been implicated in depression. However, the precise cellular mechanisms underlying this imbalance, particularly for GABAergic transmission in the mPFC, and the link with the rapid acting antidepressant ketamine remains poorly understood. Here we determined the influence of chronic unpredictable stress (CUS), an ethologically validated model of depression, on synaptic markers of GABA neurotransmission, and the influence of a single dose of ketamine on CUS-induced synaptic deficits in mPFC of male rodents. The results demonstrate that CUS decreases GABAergic proteins and the frequency of inhibitory post synaptic currents (IPSCs) of layer V mPFC pyramidal neurons, concomitant with depression-like behaviors. In contrast, a single dose of ketamine can reverse CUS-induced deficits of GABA markers, in conjunction with reversal of CUS-induced depressive-like behaviors. These findings provide further evidence of impairments of GABAergic synapses as key determinants of depressive behavior and highlight ketamine-induced synaptic responses that restore GABA inhibitory, as well as glutamate neurotransmission.


Assuntos
Antidepressivos/administração & dosagem , Depressão/fisiopatologia , Ketamina/administração & dosagem , Neurônios/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Estresse Psicológico/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/fisiologia , Animais , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Córtex Pré-Frontal/fisiopatologia
14.
Neuropsychopharmacology ; 44(13): 2230-2238, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31454827

RESUMO

Currently available antidepressants have a delayed onset and limited efficacy, highlighting the need for new, rapid and more efficacious agents. Ketamine, an NMDA receptor antagonist, has emerged as a new rapid-acting antidepressant, effective even in treatment resistant patients. However, ketamine induces undesired psychotomimetic and dissociative side effects that limit its clinical use. The d-stereoisomer of methadone (dextromethadone; REL-1017) is a noncompetitive NMDA receptor antagonist with an apparently favorable safety and tolerability profile. The current study examined the rapid and sustained antidepressant actions of d-methadone in several behavioral paradigms, as well as on mTORC1 signaling and synaptic changes in the medial prefrontal cortex (mPFC). A single dose of d-methadone promoted rapid and sustained antidepressant responses in the novelty-suppressed feeding test (NSFT), a measure of anxiety, and in the female urine sniffing test (FUST), a measure of motivation and reward. D-methadone also produced a rapid reversal of the sucrose preference deficit, a measure of anhedonia, in rats exposed to chronic unpredictable stress. D-methadone increased phospho-p70S6 kinase, a downstream target of mTORC1 in the mPFC, and intra-mPFC infusion of the selective mTORC1 inhibitor rapamycin blocked the antidepressant actions of d-methadone in the FUST and NSFT. D-methadone administration also increased levels of the synaptic proteins, PSD95, GluA1, and Synapsin 1 and enhanced synaptic function in the mPFC. Studies in primary cortical cultures show that d-methadone also increases BDNF release, as well as phospho-p70S6 kinase. These findings indicate that d-methadone induces rapid antidepressant actions through mTORC1-mediated synaptic plasticity in the mPFC similar to ketamine.


Assuntos
Antidepressivos/administração & dosagem , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metadona/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ketamina/administração & dosagem , Masculino , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
15.
J Clin Invest ; 129(6): 2542-2554, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30990795

RESUMO

Preclinical studies demonstrate that rapid acting antidepressants, including ketamine require stimulation of mTORC1 signaling. This pathway is regulated by neuronal activity, endocrine and metabolic signals, notably the amino acid leucine, which activates mTORC1 signaling via binding to the upstream regulator sestrin. Here, we examined the antidepressant actions of NV-5138, a novel highly selective small molecule modulator of sestrin that penetrates the blood brain barrier. The results demonstrate that a single dose of NV-5138 produced rapid and long-lasting antidepressant effects, and rapidly reversed anhedonia caused by chronic stress exposure. The antidepressant actions of NV-5138 required BDNF release as the behavioral responses are blocked by infusion of a BDNF neutralizing antibody into the medial prefrontal cortex (mPFC) or in mice with a knock-in of a BDNF polymorphism that blocks activity dependent BDNF release. NV-5138 administration also rapidly increased synapse number and function in the mPFC, and reversed the synaptic deficits caused by chronic stress. Together, the results demonstrate that NV-5138 produced rapid synaptic and antidepressant behavioral responses via activation of the mTORC1 pathway and BDNF signaling, indicating that pharmacological modulation of sestrin is a novel approach for development of rapid acting antidepressants.


Assuntos
Antidepressivos , Comportamento Animal/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Antidepressivos/química , Antidepressivos/farmacocinética , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Choque Térmico/genética , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/genética
16.
Proc Natl Acad Sci U S A ; 116(1): 297-302, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559184

RESUMO

Ketamine, a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, produces rapid and long-lasting antidepressant effects in major depressive disorder (MDD) patients. (2R,6R)-Hydroxynorketamine [(2R,6R)-HNK], a metabolite of ketamine, is reported to produce rapid antidepressant effects in rodent models without the side effects of ketamine. Importantly, (2R,6R)-HNK does not block NMDA receptors like ketamine, and the molecular signaling mechanisms for (2R,6R)-HNK remain unknown. Here, we examined the involvement of BDNF/TrkB/mechanistic target of rapamycin complex 1 (mTORC1) signaling in the antidepressant actions of (2R,6R)-HNK. Intramedial prefrontal cortex (intra-mPFC) infusion or systemic (2R,6R)-HNK administration induces rapid and long-lasting antidepressant effects in behavioral tests, identifying the mPFC as a key region for the actions of (2R,6R)-HNK. The antidepressant actions of (2R,6R)-HNK are blocked in mice with a knockin of the BDNF Val66Met allele (which blocks the processing and activity-dependent release of BDNF) or by intra-mPFC microinjection of an anti-BDNF neutralizing antibody. Blockade of L-type voltage-dependent Ca2+ channels (VDCCs), required for activity-dependent BDNF release, also blocks the actions of (2R,6R)-HNK. Intra-mPFC infusion of pharmacological inhibitors of TrkB or mTORC1 signaling, which are downstream of BDNF, also block the actions of (2R,6R)-HNK. Moreover, (2R,6R)-HNK increases synaptic function in the mPFC. These findings indicate that activity-dependent BDNF release and downstream TrkB and mTORC1 signaling, which increase synaptic function in the mPFC, are required for the rapid and long-lasting antidepressant effects of (2R,6R)-HNK, supporting the potential use of this metabolite for the treatment of MDD.


Assuntos
Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ketamina/análogos & derivados , Animais , Células Cultivadas , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ketamina/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
17.
IEEE Trans Neural Netw Learn Syst ; 29(7): 3283-3288, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28650826

RESUMO

In this brief, we study the delayed feedback stabilization problem for Boolean control networks (BCNs) with state delay. Using the semi-tensor product of matrices, some necessary and sufficient conditions are obtained. For the stabilization of BCNs, detailed procedure to construct the feedback controllers is also presented. We further derive the number of different feedback controllers, which can successfully stabilize the BCN in a finite time. Finally, an illustrative example is presented to show the effectiveness of our method.

18.
Neuropsychopharmacology ; 42(6): 1231-1242, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27634355

RESUMO

GLYX-13 is a putative NMDA receptor modulator with glycine-site partial agonist properties that produces rapid antidepressant effects, but without the psychotomimetic side effects of ketamine. Studies were conducted to examine the molecular, cellular, and behavioral actions of GLYX-13 to further characterize the mechanisms underlying the antidepressant actions of this agent. The results demonstrate that a single dose of GLYX-13 rapidly activates the mTORC1 pathway in the prefrontal cortex (PFC), and that infusion of the selective mTORC1 inhibitor rapamycin into the medial PFC (mPFC) blocks the antidepressant behavioral actions of GLYX-13, indicating a requirement for mTORC1 similar to ketamine. The results also demonstrate that GLYX-13 rapidly increases the number and function of spine synapses in the apical dendritic tuft of layer V pyramidal neurons in the mPFC. Notably, GLYX-13 significantly increased the synaptic responses to hypocretin, a measure of thalamocortical synapses, compared with its effects on 5-HT responses, a measure of cortical-cortical responses mediated by the 5-HT2A receptor. Behavioral studies further demonstrate that GLYX-13 does not influence 5-HT2 receptor induced head twitch response or impulsivity in a serial reaction time task (SRTT), whereas ketamine increased responses in both tests. In contrast, both GLYX-13 and ketamine increased attention in the SRTT task, which is linked to hypocretin-thalamocortical responses. The differences in the 5-HT2 receptor synaptic and behavioral responses may be related to the lack of psychotomimetic side effects of GLYX-13 compared with ketamine, whereas regulation of the hypocretin responses may contribute to the therapeutic benefits of both rapid acting antidepressants.


Assuntos
Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Ketamina/farmacologia , Oligopeptídeos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Antidepressivos/administração & dosagem , Ketamina/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Oligopeptídeos/administração & dosagem , Ratos , Ratos Sprague-Dawley
19.
Proc Natl Acad Sci U S A ; 112(26): 8106-11, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26056286

RESUMO

Ketamine produces rapid and sustained antidepressant actions in depressed patients, but the precise cellular mechanisms underlying these effects have not been identified. Here we determined if modulation of neuronal activity in the infralimbic prefrontal cortex (IL-PFC) underlies the antidepressant and anxiolytic actions of ketamine. We found that neuronal inactivation of the IL-PFC completely blocked the antidepressant and anxiolytic effects of systemic ketamine in rodent models and that ketamine microinfusion into IL-PFC reproduced these behavioral actions of systemic ketamine. We also found that optogenetic stimulation of the IL-PFC produced rapid and long-lasting antidepressant and anxiolytic effects and that these effects are associated with increased number and function of spine synapses of layer V pyramidal neurons. The results demonstrate that ketamine infusions or optogenetic stimulation of IL-PFC are sufficient to produce long-lasting antidepressant behavioral and synaptic responses similar to the effects of systemic ketamine administration.


Assuntos
Antidepressivos/farmacologia , Ketamina/farmacologia , Sistema Límbico/efeitos dos fármacos , Optogenética , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Sistema Límbico/fisiopatologia , Masculino , Córtex Pré-Frontal/fisiopatologia , Ratos , Ratos Sprague-Dawley
20.
Neuropsychopharmacology ; 40(9): 2066-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25759300

RESUMO

A single sub-anesthetic dose of ketamine, a short-acting NMDA receptor blocker, induces a rapid and prolonged antidepressant effect in treatment-resistant major depression. In animal models, ketamine (24 h) reverses depression-like behaviors and associated deficits in excitatory postsynaptic currents (EPSCs) generated in apical dendritic spines of layer V pyramidal cells of medial prefrontal cortex (mPFC). However, little is known about the effects of ketamine on basal dendrites. The basal dendrites of layer V cells receive an excitatory input from pyramidal cells of the basolateral amygdala (BLA), neurons that are activated by the stress hormone CRF. Here we found that CRF induces EPSCs in PFC layer V cells and that ketamine enhanced this effect through the mammalian target of rapamycin complex 1 synaptogenic pathway; the CRF-induced EPSCs required an intact BLA input and were generated primarily in basal dendrites. In contrast to its detrimental effects on apical dendritic structure and function, chronic stress did not induce a loss of CRF-induced EPSCs in basal dendrites, thereby creating a relative imbalance in favor of amygdala inputs. The effects of ketamine were complex: ketamine enhanced apical EPSC responses in all mPFC subregions, anterior cingulate (AC), prelimbic (PL), and infralimbic (IL) but enhanced CRF-induced EPSCs only in AC and PL-responses were unchanged in IL, a critical area for suppression of stress responses. We propose that by restoring the strength of apical inputs relative to basal amygdala inputs, especially in IL, ketamine would ameliorate the hypothesized disproportional negative influence of the amygdala in chronic stress and major depression.


Assuntos
Tonsila do Cerebelo/fisiologia , Hormônio Liberador da Corticotropina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/farmacologia , Córtex Pré-Frontal/citologia , Células Piramidais/efeitos dos fármacos , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/lesões , Animais , Dendritos/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Técnicas In Vitro , Sistema Límbico/citologia , Sistema Límbico/efeitos dos fármacos , Sistema Límbico/fisiologia , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/citologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...