Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400361, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708879

RESUMO

Photothermal therapy has emerged as a promising approach for cancer treatment, which can cause ferroptosis to enhance immunotherapeutic efficacy. However, excessively generated immunogenicity will induce serious inflammatory response syndrome, resulting in a discounted therapeutic effect. Herein, a kind of NIR absorption small organic chromophore nanoparticles (TTHM NPs) with high photothermal conversion efficiency (68.33%) is developed, which can induce mitochondria dysfunction, generate mitochondrial superoxide, and following ferroptosis. TTHM NPs-based photothermal therapy is combined with Sulfasalazine (SUZ), a kind of nonsteroidal anti-inflammatory drugs, to weaken inflammation and promote ferroptosis through suppressing glutamate/cystine (Glu/Cys) antiporter system Xc- (xCT). Additionally, the combination of SUZ with PTT can induce immunogenic cell death (ICD), followed by promoting the maturation of DCs and the attraction of CD8+ T cell, which will secrete IFN-γ and trigger self-amplified ferroptosis via inhibiting xCT and simulating Acyl-CoA synthetase long-chain family member 4 (ACSL4). Moreover, the in vivo results demonstrate that this combination therapy can suppress the expression of inflammatory factors, enhance dendritic cell activation, facilitate T-cell infiltration, and realize effective thermal elimination of primary tumors and distant tumors. In general, this work provides an excellent example of combined medication and stimulates new thinking about onco-therapy and inflammatory response.

2.
J Nanobiotechnology ; 22(1): 173, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609944

RESUMO

Depression is a mood disorder mainly clinically characterized by significant and persistent low spirits. Chronic stress is the leading cause of depression. However, traditional medicine has severe side effects in treating depression, ineffective treatment, and easy recurrence. Therefore, it is of great significance to prevent depression in the environment of chronic stress. In this study, aromatherapy was used for the prevention of depression. To solve the defects of intense volatility and inconvenience in using essential oils, we designed bionic nano-aromatic drugs and adhered them to the wallpaper. Inspired by the moldy wallpaper, we successively prepared the morphology-bionic nano-aromatic drugs, the function-bionic nano-aromatic drugs, and the bionic plus nano-aromatic drugs by referring to the morphology of microorganisms and substances in bacterial biofilms. Bionic nano-aromatic drugs remarkably promoted their adhesion on wallpaper. Molecular dynamics simulation explored its molecular mechanism. The essential oils, which were slowly released from the bionic nano-aromatic drugs, showed excellent biosecurity and depression prevention. These sustainedly released essential oils could significantly increase monoamine neurotransmitters in the brain under a chronic stress environment and had excellent neuroprotection. Besides, the bionic nano-aromatic drugs with simple preparation process and low cost had excellent application potential.


Assuntos
Biônica , Óleos Voláteis , Depressão/tratamento farmacológico , Depressão/prevenção & controle , Biofilmes , Encéfalo
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124198, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38552540

RESUMO

Polarity is a significant intracellular environmental parameter associated with cancer, while cyanide (CN-) is known to be highly toxic to humans. In this work, we designed a dual-functional fluorescent probe (TPABT) for simultaneous detection of polarity and CN-. As a polarity sensor, the probe exhibits NIR emission at 766 nm in 1,4-dioxane (non-polar solvent), whose emission intensity is 71-fold stronger than that in water (polar solvent). Meanwhile, the fluorescence intensity and quantum yield are linearly related to solvent polarity, confirming the polarity response ability of TPABT. For cell polarity detection, low cytotoxicity and polarity sensitivity of probe enable the applications for differentiating cancer cells (HeLa, 4TI) from normal cells (HUV, 3 T3) and monitoring the polarity changes of 4TI cells. As a CN- sensor, TPABT displays a turn-on fluorescence at 640 nm upon the addition of CN-, with advantages of anti-interference, response in aqueous media and low detection limit (22 nM). Additionally, we further explored the practical applications of TPABT for CN- determination in three types of real water samples (drinking water, tap water and lake water) and living cells. Notably, TPABT responses to polarity and CN- in two independent fluorescence channels of 766 and 640 nm, respectively, ensuring the dual functions for polarity and CN- sensing. Consequently, this multi-responsive fluorescent probe TPABT is promising to diagnose polarity-related diseases and detect CN- in real environments.


Assuntos
Água Potável , Corantes Fluorescentes , Tiofenos , Humanos , Cianetos/toxicidade , Espectrometria de Fluorescência , Solventes
4.
Adv Healthc Mater ; : e2304436, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335308

RESUMO

An imbalance in reactive oxygen species (ROS) levels in tumor cells can result in the accumulation of lipid peroxide (LPO) which can induce ferroptosis. Moreover, elevated ROS levels in tumors present a chance to develop ROS-based cancer therapeutics including photodynamic therapy (PDT) and ferroptosis. However, their anticancer efficacies are compromised by insufficient oxygen levels and inherent cellular ROS regulatory mechanism. Herein, a cell membrane-targeting photosensitizer, TBzT-CNQi, which can generate 1O2, •OH, and O2 •- via type I/II process to induce a high level of LPO for potent ferroptosis and photodynamic therapy is developed. The FSP1 inhibitor (iFSP1) is incorporated with TBzT-CNQi to downregulate FSP1 expression, lower the intracellular CoQ10 content, induce a high level of LPO, and activate initial tumor immunogenic ferroptosis. In vitro and in vivo experiments demonstrate that the cell membrane-targeting type I/II PDT combination with FSP1 inhibition can evoke strong ICD and activate the immune response, which subsequently promotes the invasion of CD8+ T cells infiltration, facilitates the dendritic cell maturation, and decreases the tumor infiltration of tumor-associated macrophages. The study indicates that the combination of cell membrane-targeting type I/II PDT and FSP1 inhibition holds promise as a potential strategy for ferroptosis-enhanced photodynamic immunotherapy of hypoxia tumors.

5.
Theranostics ; 14(4): 1583-1601, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389852

RESUMO

Rationale: Renal fibrosis, with no therapeutic approaches, is a common pathological feature in various chronic kidney diseases (CKD). Tubular cell injury plays a pivotal role in renal fibrosis. Commonly, injured tubular cells exhibit significant lipid accumulation. However, the underlying mechanisms remain poorly understood. Methods: 2-arachidonoylglycerol (2-AG) levels in CKD patients and CKD model specimens were measured using mass spectrometry. 2-AG-loaded nanoparticles were infused into unilateral ureteral obstruction (UUO) mice. Lipid accumulation and renal fibrosis were tested. Furthermore, monoacylglycerol lipase (MAGL), the hydrolyzing enzyme of 2-AG, was assessed in CKD patients and models. Tubular cell-specific MAGL knock-in mice were generated. Moreover, MAGL recombination protein was also administered to unilateral ischemia reperfusion injury (UIRI) mice. Besides, a series of methods including RNA sequencing, metabolomics, primary cell culture, lipid staining, etc. were used. Results: 2-AG was increased in the serum or kidneys from CKD patients and models. Supplement of 2-AG further induced lipid accumulation and fibrogenesis through cannabinoid receptor type 2 (CB2)/ß-catenin signaling. ß-catenin knockout blocked 2-AG/CB2-induced fatty acid ß-oxidation (FAO) deficiency and lipid accumulation. Remarkably, MAGL significantly decreased in CKD, aligning with lipid accumulation and fibrosis. Specific transgene of MAGL in tubular cells significantly preserved FAO, inhibited lipid-mediated toxicity in tubular cells, and finally retarded fibrogenesis. Additionally, supplementation of MAGL in UIRI mice also preserved FAO function, inhibited lipid accumulation, and protected against renal fibrosis. Conclusion: MAGL is a potential diagnostic marker for kidney function decline, and also serves as a new therapeutic target for renal fibrosis through ameliorating lipotoxicity.


Assuntos
Monoacilglicerol Lipases , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , beta Catenina , Fibrose , Rim
6.
Nat Commun ; 15(1): 1238, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336848

RESUMO

Large-area metamorphic stretchable sensor networks are desirable in haptic sensing and next-generation electronics. Triboelectric nanogenerator-based self-powered tactile sensors in single-electrode mode constitute one of the best solutions with ideal attributes. However, their large-area multiplexing utilizations are restricted by severe misrecognition between sensing nodes and high-density internal circuits. Here, we provide an electrical signal shielding strategy delivering a large-area multiplexing self-powered untethered triboelectric electronic skin (UTE-skin) with an ultralow misrecognition rate (0.20%). An omnidirectionally stretchable carbon black-Ecoflex composite-based shielding layer is developed to effectively attenuate electrostatic interference from wirings, guaranteeing low-level noise in sensing matrices. UTE-skin operates reliably under 100% uniaxial, 100% biaxial, and 400% isotropic strains, achieving high-quality pressure imaging and multi-touch real-time visualization. Smart gloves for tactile recognition, intelligent insoles for gait analysis, and deformable human-machine interfaces are demonstrated. This work signifies a substantial breakthrough in haptic sensing, offering solutions for the previously challenging issue of large-area multiplexing sensing arrays.


Assuntos
Percepção do Tato , Dispositivos Eletrônicos Vestíveis , Humanos , Tato , Eletricidade
7.
Adv Healthc Mater ; : e2303183, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117062

RESUMO

Due to the "Achilles' heels" of hypoxia, complicated location in solid tumor, small molecular photosensitizers with second near-infrared window (NIR-II) fluorescence, type-I photodynamic therapy (PDT), and photothermal therapy (PTT) have attracted great attention. However, these photosensitizers are still few but yet challenging. Herein, an "all in one" NIR-II acceptor-donor-acceptor fused-ring photosensitizer, Y6-Th, is presented for the in-depth diagnosis and efficient treatment of cancer. Benefiting from the strong intramolecular charge transfer, promoted highly efficient intersystem crossing, largely p-conjugated fused-ring structure, and reduced planarity, the fabricated nanoparticles (Y6-Th nanoparticles) can emit NIR-II fluorescence with the peak located at 1020 nm, exclusively generate O2•- for type-I PDT, and display excellent PTT performance under an 808 nm laser stimulation. These characteristics make Y6-Th a distinguished NIR-wavelength-triggered phototheranostic agent, which can effectively therapy the hypoxic tumor using NIR-II-fluorescence-guided type-I PDT/PTT. This work provides a valuable guideline for fabricating high-performing NIR-II emissive superoxide radical photogenerators.

8.
J Agric Food Chem ; 71(47): 18333-18344, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37967522

RESUMO

Chitinase has been identified as an important target for insecticides. In this study, a series of novel chitinase inhibitors was designed and synthesized with nitrobenzoxadiazoles. Compound 8d, which contains the N-methylcarbamoylguanidinyl, exhibited high enzyme inhibitory activity and achieved nanomolar inhibition against OfChtI (IC50 = 12.3 nM). Delightfully, it was also found to possess significant inhibitory activity against OfHex1 (IC50 = 1.76 µM). The computational simulation results indicated that compound 8d interacted with OfChtI and OfHex1 in similar modes through hydrogen bonds and hydrophobic and π-π interactions. Insecticidal activity studies revealed that compound 8d showed high mortality against the Lepidoptera Plutella xylostella (mortality rate = 81%) at 200 mg/L. Toxicity studies indicated that compound 8d exhibited negligible toxicity to the natural enemy Trichogramma ostriniae. These results indicate that compound 8d may be a promising candidate for the development of environmentally friendly chitinase inhibitors. Moreover, this study provides a new angle for the design of innovative inhibitors of chitinolytic enzymes.


Assuntos
Quitinases , Inseticidas , Lepidópteros , Animais , Simulação de Acoplamento Molecular , Inseticidas/química , beta-N-Acetil-Hexosaminidases
10.
Sensors (Basel) ; 23(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37837071

RESUMO

Road defect detection is a crucial aspect of road maintenance projects, but traditional manual methods are time-consuming, labor-intensive, and lack accuracy. Leveraging deep learning frameworks for object detection offers a promising solution to these challenges. However, the complexity of backgrounds, low resolution, and similarity of cracks make detecting road cracks with high accuracy challenging. To address these issues, a novel road crack detection algorithm, termed Road Defect Detection YOLOv5 (RDD-YOLOv5), was proposed. Firstly, a model was proposed to integrate the transformer structure and explicit vision center to capture the long-distance dependency and aggregate key characteristics. Additionally, the Sigmoid-weighted linear activations in YOLOv5 were replaced with the Gaussian Error Linear Units to enhance the model's nonlinear fitting capability. To evaluate the algorithm's performance, a UAV flight platform was constructed, and experimental freebies were provided to boost inspection efficiency. The experimental results demonstrate the effectiveness of RDD-YOLOv5, achieving a mean average precision of 91.48%, surpassing the original YOLOv5 by 2.5%. The proposed model proves its ability to accurately identify road cracks, even under challenging and complex traffic backgrounds. This advancement in road crack detection technology has significant implications for improving road maintenance and safety.

11.
Mater Horiz ; 10(11): 4868-4881, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37772470

RESUMO

Porphyrin-based photosensitizers have been widely utilized in photodynamic therapy (PDT), but they suffer from deteriorating fluorescence and reactive oxygen species (ROS) due to their close π-π stacking. Herein, a biocompatible pure organic porphyrin nanocage (Py-Cage) with enhanced both type I and type II ROS generation is reported for PDT. The porphyrin skeleton within the Py-Cage is spatially separated by four biphenyls to avoid the close π-π stacking within the nanocage. The Py-Cage showed a large cavity and high porosity with a Brunauer-Emmett-Teller surface area of over 300 m2 g-1, facilitating a close contact between the Py-Cage and oxygen, as well as the fast release of ROS to the surrounding microenvironment. The Py-Cage shows superb ROS generation performance over its precursors and commercial ones such as Chlorin E6 and Rose Bengal. Intriguingly, the cationic π-conjugated Py-Cage also shows promising type I ROS (superoxide and hydroxyl radicals) generation that is more promising for hypoxic tumor treatment. Both in vitro cell and in vivo animal experiments further confirm the excellent antitumor activity of the Py-Cage. As compared to conventional metal coordination approaches to improve PDT efficacy of porphyrin derivatives, the pure organic porous Py-Cage demonstrates excellent biocompatibility, which is further verified in both mice and rats. This work of an organic porous nanocage shall provide a new paradigm for the design of novel, biocompatible and effective photosensitizers for PDT.


Assuntos
Fotoquimioterapia , Porfirinas , Camundongos , Ratos , Animais , Fármacos Fotossensibilizantes/farmacologia , Porosidade , Espécies Reativas de Oxigênio , Porfirinas/farmacologia
12.
Redox Biol ; 67: 102868, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37690165

RESUMO

Kidney fibrosis is associated with tubular injury, oxidative stress and activation of interstitial fibroblasts. However, whether these events are somehow connected is poorly understood. In this study, we show that glutathione peroxidase-3 (GPX3) depletion in renal tubular epithelium after kidney injury plays a central role in orchestrating an oxidatively stressed extracellular microenvironment, which drives interstitial fibroblast activation and proliferation. Through transcriptional profiling by RNA-sequencing, we found that the expression of GPX3 was down-regulated in various models of chronic kidney disease (CKD), which was correlated with induction of nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase-4 (NOX4). By using decellularized extracellular matrix (ECM) scaffold, we demonstrated that GPX3-depleted extracellular microenvironment spontaneously induced NOX4 expression and reactive oxygen species (ROS) production in renal fibroblasts and triggered their activation and proliferation. Activation of NOX4 by advanced oxidation protein products (AOPPs) mimicked the loss of GPX3, increased the production of ROS, stimulated fibroblast activation and proliferation, and activated protein kinase C-α (PKCα)/mitogen-activated protein kinase (MAPK)/signal transducer and activator of transcription 3 (STAT3) signaling. Silencing NOX4 or inhibition of MAPK with small molecule inhibitors hampered fibroblast activation and proliferation. In mouse model of CKD, knockdown of NOX4 repressed renal fibroblast activation and proliferation and alleviated kidney fibrosis. These results indicate that loss of GPX3 orchestrates an oxidatively stressed extracellular microenvironment, which promotes fibroblast activation and proliferation through a cascade of signal transduction. Our studies underscore the crucial role of extracellular microenvironment in driving fibroblast activation and kidney fibrosis.


Assuntos
Rim , Insuficiência Renal Crônica , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Fibroblastos/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Fibrose
13.
Environ Sci Pollut Res Int ; 30(43): 97688-97699, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37596478

RESUMO

The migration and transformation of Tetrabromobisphenol A (TBBPA), DechloranePlus (DP), and cadmium in soil-rice system was investigated, and the influence on the quality of two varieties of rice was studied. The degradation half-lives of TBBPA, BBPAs, syn-DP, and anti-DP were 23.18 ~ 26.36 days, 30.14 ~ 36.10 days, 72.96-81.55 days, and 169.06-198.04 days in the soil. TBBPA was gradually degraded to tri-BBPA, di-BBPA, mono-BBPA, and bisphenol A by the debromination. TBBPA and its bromide metabolites could be bioaccumulated in different tissues of rice; mono-BBPA and bisphenol A was easy to accumulate in the stems, and bisphenol A was easy to bioaccumulate in the grain. Comparing with single and compound pollution, there was no significant difference in bioaccumulation factors of two rice species. The grain of NO7 had stronger bioaccumulation ability to mono-BBPA and BPA than NO1, and there is no significant difference in TBBPA. Residual level of DP in the rice: roots > stems > grain; there was no significant difference in bioaccumulation of two varieties of rice. Cadmium was easily bioaccumulated in the roots of rice and translocated to the rice stems and grains. NO7 rice had stronger bioaccumulation and transport capacity than NO1. The effects of the three pollutants on the quality of two varieties of rice varied significantly; cadmium had the greatest effect on the iodine blue value (BV) and amylase activity of the grain. This study proved that selecting rice varieties with low bioaccumulation to polluters can effectively reduce the risk of the food chain harming human health.


Assuntos
Retardadores de Chama , Oryza , Humanos , Cádmio , Grão Comestível , Solo
14.
Small ; 19(48): e2303949, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37530198

RESUMO

To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi-solid substances, are the appropriate and burgeoning electrolytes that enable high-performance flexible AZIESSs. However, challenges still remain in designing suitable and comprehensive hydrogel electrolyte, which provides flexible AZIESSs with high reversibility and versatility. Hence, the application of hydrogel electrolyte-based AZIESSs in wearable electronics is restricted. A thorough review is required for hydrogel electrolyte design to pave the way for high-performance flexible AZIESSs. This review delves into the engineering of desirable hydrogel electrolytes for flexible AZIESSs from the perspective of electrolyte designers. Detailed descriptions of hydrogel electrolytes in basic characteristics, Zn anode, and cathode stabilization effects as well as their functional properties are provided. Moreover, the application of hydrogel electrolyte-based flexible AZIESSs in wearable electronics is discussed, expecting to accelerate their strides toward lives. Finally, the corresponding challenges and future development trends are also presented, with the hope of inspiring readers.

15.
Adv Mater ; 35(40): e2305438, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37526223

RESUMO

Water-droplet-based electricity generators are emerging hydrovoltaic technologies that harvest energy from water circulation through strong interactions between water and nanomaterials. However, such devices exhibit poor current performance owing to their unclear driving force (evaporation or infiltration) and undesirable reverse diffusion current. Herein, a water-droplet-based hydrovoltaic electricity generator induced by capillary infiltration with an asymmetric structure composed of a diode-like heterojunction formed by negatively and positively charged materials is fabricated. This device can generate current densities of 160 and 450 µA cm-2 at room temperature and 65 °C, respectively. The heterojunction achieves a rectification ratio of 12, which effectively suppresses the reverse current caused by concentration differences. This results in an improved charge accumulation of ≈60 mC cm-2 in 1000 s, which is three times the value observed in the control device. When the area of the device is increased to 6 cm2 , the current increases linearly to 1 mA, thus demonstrating the scale-up potential of the generator. It has been proven that the streaming potential originates from capillary infiltration, and the presence of ion rectification. The proposed method of constructing ion-diode-like structures provides a new strategy for improving generator performance.

16.
Environ Sci Pollut Res Int ; 30(40): 92922-92936, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37501026

RESUMO

In the context of the global green and low-carbon transformation, microgrids containing renewable energy have been widely developed. At present, renewable energy generation has the disadvantages of instability and low energy density. In addition, the high proportion of electric vehicles (EVs) connected to the state grid will cause different degrees of disturbance to its safe operation. Therefore, a coordinated operation strategy of EV and photovoltaic (PV)-energy-storage charging stations induced by dynamic electricity price considering carbon reduction benefit is proposed. On the power generation side, a dual-axis PV tracking control method with "fixed frequency + variable frequency" control is proposed. One day is used as a period to divide the time segments, and the same time segment uses the fixed frequency tracking method, while different time segments use the variable frequency tracking method to improve the power generation efficiency. On the electricity consumption side, a dynamic electricity price strategy is adopted, using the minimum carbon reduction cost as the reward function, optimizing the dynamic electricity price under the minimum carbon reduction cost using the deep deterministic policy gradient (DDPG) algorithm to promote the shifting of EV charging load to the effective hours of PV generation. In conclusion, the simulation analysis is carried out in Zibo City, and the generation capacity of the proposed tracking method on the power generation side is improved by about 32% compared with the fixed PV generation capacity. Compared with the time-of-use electricity price, the optimized dynamic electricity price under the minimum carbon reduction cost can better promote the load transfer and photoelectric consumption of EVs and reduce the carbon reduction cost.


Assuntos
Carbono , Energia Renovável , Eletricidade , Algoritmos , Cidades , Fontes de Energia Elétrica
17.
Anal Sci ; 39(11): 1875-1888, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37460918

RESUMO

Tetrabromobisphenol A (TBBPA) was typical brominated flame retardant and potential environmental endocrine disruptor, and it had persistence, bioaccumulation and chronic toxicity. Simultaneous determination of ultra-trace TBBPA, tribromobiphenol A (tri-BBPA), dibromobiphenol A (di-BBPA), monobromobisphenol A (mono-BBPA) and bisphenol A (BPA) was developed by high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS), the parent ion charge ratios (m/z) had been optimized. The linear range was wider and the limit of detection was (LOD) 0.09 ~ 0.21 ng mL-1, which could detect trace pollutants. The extraction efficiency was improved by optimizing the parameters, HLB cartridge was used in the water sample by solid phase extraction (SPE), the recovery rates in water samples were over 80.28% with three concentration levels, the relative standard deviations (RSD) were less than 7.12%, and the minimum detection limit of the method was 0.90 ~ 2.10 × 10-3 ng mL-1. Soil and sediment samples were extracted by accelerated solvent extraction (ASE), the recovery rates in soil and sediment were over 79.40% and 75.65%, the minimum detection limit was 0.0225 ~ 0.0525 ng g-1, RSD was less than 7.19%. The proffered method was successfully utilized to detect actual samples, the residue of di-BBPA and mono-BBPA are detected in Naihe River and Shuxi River in Tai'an City, residue of di-BBPA and mono-BBPA was detected in the soil, and there was low residual amount of di-BBPA, mono-BBPA and BPA in the sediment of Shuxi River.

18.
J Agric Food Chem ; 71(30): 11654-11666, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37467369

RESUMO

Herbicide resistance is a prevalent problem that has posed a foremost challenge to crop production worldwide. Light-dependent enzyme NADPH: protochlorophyllide oxidoreductase (LPOR) in plants is a metabolic target that could satisfy this unmet demand. Herein, for the first time, we embarked on proposing a new mode of action of herbicides by performing structure-based virtual screening targeting multiple LPOR binding sites, with the determination of further bioactivity on the lead series. The feasibility of exploiting high selectivity and safety herbicides targeting LPOR was discussed from the perspective of the origin and phylogeny. Besides, we revealed the structural rearrangement and the selection key for NADPH cofactor binding to LPOR. Based on these, multitarget virtual screening was performed and the result identified compounds 2 affording micromolar inhibition, in which the IC50 reached 4.74 µM. Transcriptome analysis revealed that compound 2 induced more genes related to chlorophyll synthesis in Arabidopsis thaliana, especially the LPOR genes. Additionally, we clarified that these compounds binding to the site enhanced the overall stability and local rigidity of the complex systems from molecular dynamics simulation. This study delivers a guideline on how to assess activity-determining features of inhibitors to LPOR and how to translate this knowledge into the design of novel and effective inhibitors against malignant weed that act by targeting LPOR.


Assuntos
Herbicidas , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Protoclorifilida/metabolismo , Luz , Herbicidas/farmacologia , NADP/metabolismo , Plantas/metabolismo , Oxirredutases , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo
19.
J Agric Food Chem ; 71(18): 6803-6817, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37104678

RESUMO

A series of simple diarylhydrazide derivatives (45 examples) were well-designed, prepared, and screened for their antifungal activities both in vitro and in vivo. Bioassay results suggested that all designed compounds had significant activity against Alternaria brassicae (EC50 = 0.30-8.35 µg/mL). Among of them, 2c, as the highest activity compound, could effectively inhibit the growth of plant pathogens Pyricularia oryza, Fusarium solani, Alternaria solani, Alternaria brassicae, and Alternaria alternate and was more potent than carbendazim and thiabendazole. 2c showed almost 100% protection at 200 µg/mL in vivo activity against A. solani in tomato. Moreover, 2c did not affect the germination of cowpea seed and the growth of normal human hepatocytes. The preliminary mechanistic exploration documented that 2c could result in the abnormal morphology and irregular structure of the cell membrane, destroy the function of mitochondria, increase the reactive oxygen species, and inhibit the proliferation of hypha cell. The above results manifested that target compound 2c could be a potential fungicidal candidate against phytopathogenic diseases for its excellent fungicidal activities.


Assuntos
Ascomicetos , Fungicidas Industriais , Humanos , Antifúngicos/química , Relação Estrutura-Atividade , Fungicidas Industriais/química
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122757, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37094428

RESUMO

Excessive residual hydrogen peroxide (H2O2) disinfectant in food is harmful to human health. Therefore, it is necessary to develop efficient detection methods for H2O2 detection. In this work, we designed and synthesized five D-A molecules 3a-3e by introducing electron-donor substituents (-OCH3 and -CH3) to the electron-acceptor dicyanoisophorone skeleton in order to find out the suitable probes for H2O2 detection. Among them, two promising probes, 3a and 3c, are screened out according to structure-property relationships. Based on the principle of intramolecular charge transfer (ICT), 3a and 3c express colorimetric and fluorescent dual-signals towards H2O2 with low detection limits (0.20 µM and 0.14 µM) and rapid response (within 20 mins). The reaction mechanism between probes and H2O2 is determined by 1H NMR and HRMS. Density functional theory (DFT) calculations are measured to study the regulation mechanism of structure adjustment on probs performance. Furthermore, a smartphone RGB analysis is utilized as a portable platform for the quantitative detection of H2O2 without complicated instruments, indicating a high efficiency and on-site detection method for H2O2. In addition, probes are applied to detect H2O2 in milk samples, HepG-2 cells and zebrafish, suggesting the promising applications in food samples and physiological systems.


Assuntos
Corantes Fluorescentes , Peróxido de Hidrogênio , Animais , Humanos , Peróxido de Hidrogênio/análise , Corantes Fluorescentes/química , Colorimetria , Leite/química , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...