Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121667, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959776

RESUMO

Implementing a Carbon Peak Action Plan at the regional level requires comprehensive consideration of the developmental heterogeneity among different provinces, which is an effective pathway for China to realize the goal of carbon peak by 2030. However, there is currently no clear provincial roadmap for carbon peak, and existing studies on carbon peak pathways inadequately address provincial heterogeneity. Therefore, this paper employs the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model to decompose assess 8 factors influencing carbon emissions of 30 provinces. According to scenario analysis, the paper explores the differentiated pathways for provincial carbon peaks based on policy expectation indicators (including population, economy, and urbanization rate) and comprises policy control indicators (including the energy structure, energy efficiency, industrial structure, transportation structure, and innovation input). The results indicate that population, per capita GDP, urbanization rate, and innovation input are the primary factors for influencing (negatively) the growth of carbon emissions. In contrast, the optimization and upgrading of the industrial structure, energy intensity, energy structure, and transportation structure have mitigating effects on carbon emissions, especially for the first two factors. The forecasting results reveal that robust regulations of the energy and industry can effectively accelerate carbon peak at a reduced magnitude. If developed at BAU, China cannot achieve carbon peak by 2030, continuing an upward trend. However, by maximizing the adjustment strength of energy and industrial transformation within the scope of provincial capabilities, China could achieve carbon peak as early as 2025, with a peak of 12.069 billion tons. In this scenario, 24 provinces could achieve carbon peak before 2030. Overall, this study suggests the feasibility of differentiated pathway to achieve carbon peaks in China, exploring the carbon peak potential and paths of 30 provinces, and identifying provinces where carbon peak is more challenging. It also provides a reference for the design of carbon peak roadmaps at both provincial and national levels and offers targeted recommendations for the implementation of differentiated policy strategies for the government.


Assuntos
Dióxido de Carbono , Urbanização , China , Dióxido de Carbono/análise , Carbono
2.
Huan Jing Ke Xue ; 45(3): 1233-1242, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471840

RESUMO

Promoting regions with favorable conditions to take the lead in reaching a carbon peak is an inevitable step towards achieving the dual carbon goals under the "nationwide coordinated action" plan. Considering the differences among Chinese provinces, this study measured the peaking pressure of each province based on the spatial distribution of carbon emissions. We then constructed a provincial peaking capacity evaluation system based on five dimensions, namely, peaking pressure, emission reduction status, economic development, policy support, and resource endowment, to comprehensively evaluate the carbon peaking capacity of 30 provincial administrative regions in China, excluding Hong Kong, Macau, Taiwan, and Tibet, using the entropy value method to determine the index weights. The 30 provinces were divided into five peaking tiers according to the evaluation results. The results showed that:① 18 regions, such as Hainan and Beijing, displayed a surplus in carbon emission space; eight regions, including Hebei and Shandong, showed a deficit in carbon emission space; and the carbon emission spaces allocated to Zhejiang, Anhui, Henan, and Hubei were comparable to their respective actual emissions. ② Developed regions generally had a higher carbon peaking capacity than that of less developed regions, with Beijing and Shanghai showing outstanding carbon peaking capacity, whereas Jiangxi and Guizhou had more room to improve their capacity. Finally, differentiated peaking targets and priority actions were proposed according to the provinces' different peaking tiers and local conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA