Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | PAHO-IRIS | ID: phr-53009

RESUMO

[ABSTRACT]. Objective. To examine the impact of four ambient air pollutants on the COVID-19 mortality rate in the United States of America. Methods. Using publicly accessible data collected by the United States Census Bureau, Environmental Protection Agency, and other agencies, county-level mortality rates were regressed on concentration values of ground-level ozone, nitrogen dioxide, carbon monoxide, and sulfur dioxide. Four confounder variables were included in the regression analysis: median household income, rate of hospital beds, population density, and days since first confirmed case. Results. Regression analysis showed that ground-level ozone is positively correlated with county-level mortality rates regardless of whether confounders are controlled for. Nitrogen dioxide is also shown to have a direct relationship with county-level mortality rates, except when all confounders are included in the analysis. Conclusions. High ground-level ozone and nitrogen dioxide concentrations contribute to a greater COVID-19 mortality rate. To limit further losses, it is important to reflect research findings in public policies. In the case of air pollution, environmental restrictions should be reinforced, and extra precautions should be taken as facilities start reopening.


[ABSTRACT]. Objective. To examine the impact of four ambient air pollutants on the COVID-19 mortality rate in the United States of America. Methods. Using publicly accessible data collected by the United States Census Bureau, Environmental Protection Agency, and other agencies, county-level mortality rates were regressed on concentration values of ground-level ozone, nitrogen dioxide, carbon monoxide, and sulfur dioxide. Four confounder variables were included in the regression analysis: median household income, rate of hospital beds, population density, and days since first confirmed case. Results. Regression analysis showed that ground-level ozone is positively correlated with county-level mortality rates regardless of whether confounders are controlled for. Nitrogen dioxide is also shown to have a direct relationship with county-level mortality rates, except when all confounders are included in the analysis. Conclusions. High ground-level ozone and nitrogen dioxide concentrations contribute to a greater COVID-19 mortality rate. To limit further losses, it is important to reflect research findings in public policies. In the case of air pollution, environmental restrictions should be reinforced, and extra precautions should be taken as facilities start reopening.


Assuntos
Infecções por Coronavirus , Poluição do Ar , Mortalidade , Ozônio , Dióxido de Nitrogênio , Estados Unidos , Infecções por Coronavirus , Poluição do Ar , Mortalidade , Ozônio , Dióxido de Nitrogênio , Estados Unidos , COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA