Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(10): e0083223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796128

RESUMO

IMPORTANCE: Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of several B cell malignancies and Kaposi's sarcoma. We analyzed the function of K8.1, the major antigenic component of the KSHV virion in the infection of different cells. To do this, we deleted K8.1 from the viral genome. It was found that K8.1 is critical for the infection of certain epithelial cells, e.g., a skin model cell line but not for infection of many other cells. K8.1 was found to mediate attachment of the virus to cells where it plays a role in infection. In contrast, we did not find K8.1 or a related protein from a closely related monkey virus to activate fusion of the viral and cellular membranes, at least not under the conditions tested. These findings suggest that K8.1 functions in a highly cell-specific manner during KSHV entry, playing a crucial role in the attachment of KSHV to, e.g., skin epithelial cells.


Assuntos
Glicoproteínas , Herpesvirus Humano 8 , Queratinócitos , Proteínas Virais , Ligação Viral , Internalização do Vírus , Humanos , Glicoproteínas/deficiência , Glicoproteínas/genética , Glicoproteínas/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Queratinócitos/metabolismo , Queratinócitos/virologia , Sarcoma de Kaposi/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Fusão de Membrana , Pele/citologia
2.
Viruses ; 15(2)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36851478

RESUMO

Foamy viruses (FVs) are naturally found in many different animals and also in primates with the notable exception of humans, but zoonotic infections are common. In several species, two different envelope (env) gene sequence clades or genotypes exist. We constructed a simian FV (SFV) clone containing a reporter gene cassette. In this background, we compared the env genes of the SFVmmu-DPZ9524 (genotype 1) and of the SFVmmu_R289hybAGM (genotype 2) isolates. SFVmmu_R289hybAGM env-driven infection was largely resistant to neutralization by SFVmmu-DPZ9524-neutralizing sera. While SFVmmu_R289hybAGM env consistently effected higher infectivity and cell-cell fusion, we found no differences in the cell tropism conferred by either env across a range of different cells. Infection by both viruses was weakly and non-significantly enhanced by simultaneous knockout of interferon-induced transmembrane proteins (IFITMs) 1, 2, and 3 in A549 cells, irrespective of prior interferon stimulation. Infection was modestly reduced by recombinant overexpression of IFITM3, suggesting that the SFV entry step might be weakly restricted by IFITM3 under some conditions. Overall, our results suggest that the different env gene clades in macaque foamy viruses induce genotype-specific neutralizing antibodies without exhibiting overt differences in cell tropism, but individual env genes may differ significantly with regard to fitness.


Assuntos
Interferons , Spumavirus , Animais , Humanos , Fusão Celular , Genes env , Genótipo , Macaca , Proteínas de Membrana/genética , Proteínas de Ligação a RNA , Spumavirus/genética , Tropismo , Internalização do Vírus
3.
Autophagy ; 18(6): 1433-1449, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34740307

RESUMO

Free spread is a classical mode for mammalian virus transmission. However, the efficiency of this transmission approach is generally low as there are structural barriers or immunological surveillances in the extracellular environment under physiological conditions. In this study, we systematically analyzed the spreading of classical swine fever virus (CSFV) using multiple viral replication analysis in combination with antibody neutralization, transwell assay, and electron microscopy, and identified an extracellular vesicle (EV)-mediated spreading of CSFV in cell cultures. In this approach, intact CSFV virions are enclosed within EVs and transferred into uninfected cells with the movement of EVs, leading to an antibody-resistant infection of the virus. Using fractionation assays, immunostaining, and electron microscopy, we characterized the CSFV-containing EVs and demonstrated that the EVs originated from macroautophagy/autophagy. Taken together, our results showed a new spreading mechanism for CSFV and demonstrated that the EVs in CSFV spreading are closely related to autophagy. These findings shed light on the immune evasion mechanisms of CSFV transmission, as well as new functions of cellular vesicles in virus lifecycles.Abbreviations: 3-MA: 3-methyladenine; CCK-8: Cell Counting Kit-8; CSF: classical swine fever; CQ: chloroquine; CSFV: classical swine fever virus; DAPI, 4-,6-diamidino-2-phenylindole; EVs: extracellular vesicles; hpi: h post infection; IEM: immunoelectron microscopy; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MOI: multiplicity of infection; MVs: microvesicles; ND50: half neutralizing dose; PCR: polymerase chain reaction; PBS: phosphate-buffered saline; SEC: size-exclusion chromatography; siRNA: small interfering RNA; TEM: transmission electron microscopy.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Vesículas Extracelulares , Animais , Anticorpos , Autofagia , Técnicas de Cultura de Células , Linhagem Celular , Peste Suína Clássica/genética , Vírus da Febre Suína Clássica/fisiologia , Vesículas Extracelulares/metabolismo , Mamíferos/metabolismo , RNA Interferente Pequeno/metabolismo , Suínos , Replicação Viral
4.
Vet Microbiol ; 255: 109034, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33721634

RESUMO

Classical swine fever virus (CSFV), an enveloped virus belonging to the genus Pestivirus of the Flaviviridae family, utilizes cell host factors for its own replication. ARFGAP1, GTPase activating protein of ADP-ribosylation factor 1, regulates COP I vesicle formation and function in cells and is involved in the life cycle of several viruses. However, the effect of ARFGAP1 on the infection of CSFV has not been illustrated. Here we showed that inhibition of ARFGAP1 either by QS11 or by lentivirus-mediated silencing repressed CSFV replication. While, subsequent experiments revealed that CSFV production were increased in cells with sufficient ARFGAP1 expression. However, ARFGAP1 was not involved in CSFV binding, entry, access to cell vesicles, and RNA replication during the early stages of infection. Then, we showed that ARFGAP1 interacted with the viral protein of NS5A, measured by immunoprecipitation, GST-pulldown, and confocal microscopy assays. Furthermore, we revealed that ARFGAP1 could alleviated CSFV NS5A-induced endoplasmic reticulum stress (ERS). Altogether, these results demonstrate that ARFGAP1, a NS5A binding protein, is involved in CSFV replication.


Assuntos
Vírus da Febre Suína Clássica/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Animais , Linhagem Celular , Sobrevivência Celular , Estresse do Retículo Endoplasmático , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Ligação Proteica , Purinas/farmacologia , Suínos , Proteínas Virais/genética
5.
Vet Microbiol ; 252: 108929, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33254057

RESUMO

Porcine circovirus type 2 is the main pathogen of porcine circovirus disease, which has caused enormous economic losses to the pig industry worldwide. The PKR signaling pathway is important for the cellular antiviral response, but its role in the process of PCV2 infection is unknown. In this study, we first found that dsRNA was produced and that PKR was activated in PCV2 infection. However, interestingly, the activation of PKR was inhibited when the Cap protein was exogenously expressed in PAMs, and this inhibition was reversed by the expression of DNAJC7. The interaction between Cap and DNAJC7 was confirmed by laser confocal microscopy, coimmunoprecipitation and GST pull-down, and it was found that PCV2 infection or the expression of Cap protein could induce DNAJC7 to migrate to the nucleus and release P58IPK, an inhibitor of PKR activation. Downregulating the expression of DNAJC7 by a specific inhibitor or recombinant lentivirus-mediated shRNA, inhibited the replication of the PCV2 genome and the production of virions, which was consistent with the increase of DNAJC7 expression in multiple tissues of weaned piglets infected with PCV2. These data indicate that although PKR was activated by PCV2 infection, the activation was inhibited by Cap through an interaction with DNAJC7. These results help to understand the molecular mechanism of immune escape after PCV2 infection.


Assuntos
Infecções por Circoviridae/veterinária , Proteínas de Choque Térmico HSP40/metabolismo , Transdução de Sinais , Doenças dos Suínos/virologia , Animais , Núcleo Celular/metabolismo , Infecções por Circoviridae/virologia , Circovirus/genética , Proteínas de Choque Térmico HSP40/genética , Suínos , Vírion/fisiologia , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
6.
Vet Microbiol ; 246: 108743, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32605744

RESUMO

Classical swine fever virus (CSFV), a plus-sense RNA virus, utilizes host intracellular membrane organelles for its replication. Our previous studies have shown that disruption of the intracellular membrane-trafficking events can inhibit CSFV replication. However, the underlying mechanism of this process in CSFV infection has not been elucidated. To determine the role of Golgi-associated anterograde and retrograde trafficking in CSFV replication, we revealed the effect of vesicular transport between Golgi and ER inhibitors Brefeldin A (BFA) and 2,2-methyl-N-(2,4,6,-trimethoxyphenyl) dodecanamide (CI-976), the GBF1 inhibitor golgicide A (GCA) on virus production. Our results showed that disruption of vesicular trafficking by BFA, CI-976, and GCA significantly inhibited CSFV infection. Subsequent experiments revealed that knockdown of Rab1b by lentiviruses and negative-mutant Rab1b-N121I transfection inhibited CSFV infection. Furthermore, we showed that the Rab1b downstream vesicular component effectors GBF1, and class I and class II ADP-ribosylation factors (ARFs) were also involved in virus replication. In addition, confocal microscopy assay showed that CSFV infection disrupted the Golgi apparatus resulting in extended Golgi distribution around the nucleus. We also showed that cell secretory pathway, measured using Gaussia luciferase flash assay, was blocked in CSFV infected cells. Taken together, these findings demonstrate that CSFV utilizes Rab1b-GBF1-ARFs mediated trafficking to promote its own replication. These findings also provide new insights into the intracellular trafficking pathways utilized for CSFV life cycle.


Assuntos
Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/fisiologia , Células Endoteliais/virologia , Fatores de Troca do Nucleotídeo Guanina/genética , Replicação Viral/efeitos dos fármacos , Proteínas rab1 de Ligação ao GTP/genética , Animais , Brefeldina A/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Transporte Proteico , Suínos , Veias Umbilicais/citologia , Proteínas rab1 de Ligação ao GTP/metabolismo
7.
Virulence ; 11(1): 489-501, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32419589

RESUMO

Classical swine fever virus (CSFV), a positive-sense RNA virus, hijacks cell host proteins for its own replication. Rab18, a small Rab GTPase, regulates intracellular membrane-trafficking events between various compartments in cells and is involved in the life cycle of multiple viruses. However, the effect of Rab18 on the production of CSFV remains uncertain. In this study, we showed that knockdown of Rab18 by lentiviruses inhibited CSFV production, while overexpression of Rab18 by lentiviruses enhanced CSFV production. Subsequent experiments revealed that the negative-mutant Rab18-S22 N inhibited CSFV infection, while the positive-mutant Rab18-Q67 L enhanced CSFV infection. Furthermore, we showed that CSFV RNA replication and virion assembly, measured by real-time fluorescence quantitative PCR (RT-qPCR), indirect immunofluorescence assay (IFA), and confocal microscopy, were reduced in cells lacking Rab18 expression. In addition, co-immunoprecipitation, GST-pulldown, and confocal microscopy assays revealed that Rab18 bound to the viral protein NS5A. Further, NS5A was shown to be redistributed in Rab18 knockdown cells. Taken together, these findings demonstrate Rab18 as a novel host factor required for CSFV RNA replication and particle assembly by interaction with the viral protein NS5A.


Assuntos
Células Endoteliais/virologia , Interações Hospedeiro-Patógeno , Proteínas não Estruturais Virais/metabolismo , Montagem de Vírus , Replicação Viral , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/fisiologia , Técnicas de Silenciamento de Genes , Suínos , Veias Umbilicais/citologia , Proteínas não Estruturais Virais/genética , Proteínas rab de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...