Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 32(17): 3773-3784.e5, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36029772

RESUMO

Leaves of seed plants provide an attractive system to study the development and evolution of form. Leaves show varying degrees of margin complexity ranging from simple, as in Arabidopsis thaliana, to fully dissected into leaflets in the closely related species Cardamine hirsuta. Leaflet formation requires actions of Class I KNOTTED1-LIKE HOMEOBOX (KNOX1) and REDUCED COMPLEXITY (RCO) homeobox genes, which are expressed in the leaves of C. hirsuta but not A. thaliana. Evolutionary studies indicate that diversification of KNOX1 and RCO genes was repeatedly associated with increased leaf complexity. However, whether this gene combination represents a developmentally favored avenue for leaflet formation remains unknown, and the cell-level events through which the combined action of these genes drives leaflet formation are also poorly understood. Here we show, through a genetic screen, that when a C. hirsuta RCO transgene is expressed in A. thaliana, then ectopic KNOX1 expression in leaves represents a preferred developmental path for leaflet formation. Using time-lapse growth analysis, we demonstrate that KNOX1 expression in the basal domain of leaves leads to prolonged and anisotropic cell growth. This KNOX1 action, in synergy with local growth repression by RCO, is instrumental in generating rachises and petiolules, the linear geometrical elements, that bear leaflets in complex leaves. Our results show how the combination of cell-level growth analyses and genetics can help us understand how evolutionary modifications in expression of developmentally important genes are translated into diverse leaf shapes.


Assuntos
Arabidopsis , Genes Homeobox , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Folhas de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Curr Biol ; 32(9): 1974-1985.e3, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35354067

RESUMO

The Arabidopsis root offers good opportunities to investigate how regulated cellular growth shapes different tissues and organs, a key question in developmental biology. Along the root's longitudinal axis, cells sequentially occupy different developmental states. Proliferative meristematic cells give rise to differentiating cells, which rapidly elongate in the elongation zone, then mature and stop growing in the differentiation zone. The phytohormone cytokinin contributes to this zonation by positioning the boundary between the meristem and the elongation zone, called the transition zone. However, the cellular growth profile underlying root zonation is not well understood, and the cellular mechanisms that mediate growth cessation remain unclear. By using time-lapse imaging, genetics, and computational analysis, we analyze the effect of cytokinin on root zonation and cellular growth. We found that cytokinin promotes growth cessation in the distal (shootward) elongation zone in conjunction with accelerating the transition from elongation to differentiation. We estimated cell-wall stiffness by using osmotic treatment experiments and found that cytokinin-mediated growth cessation is associated with cell-wall stiffening and requires the action of an auxin influx carrier, AUX1. Our measurement of growth and cell-wall mechanical properties at a cellular resolution reveal mechanisms via which cytokinin influences cell behavior to shape tissue patterns.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/farmacologia , Meristema , Raízes de Plantas
3.
Development ; 147(24)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33268451

RESUMO

Epithelia are dynamic tissues that self-remodel during their development. During morphogenesis, the tissue-scale organization of epithelia is obtained through a sum of individual contributions of the cells constituting the tissue. Therefore, understanding any morphogenetic event first requires a thorough segmentation of its constituent cells. This task, however, usually involves extensive manual correction, even with semi-automated tools. Here, we present EPySeg, an open-source, coding-free software that uses deep learning to segment membrane-stained epithelial tissues automatically and very efficiently. EPySeg, which comes with a straightforward graphical user interface, can be used as a Python package on a local computer, or on the cloud via Google Colab for users not equipped with deep-learning compatible hardware. By substantially reducing human input in image segmentation, EPySeg accelerates and improves the characterization of epithelial tissues for all developmental biologists.


Assuntos
Epitélio/crescimento & desenvolvimento , Morfogênese/genética , Software , Biologia Computacional , Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador
4.
Plant J ; 100(2): 411-429, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31276249

RESUMO

To accelerate the isolation of plant protein complexes and study cellular localization and interaction of their components, an improved recombineering protocol is described for simple and fast site-directed modification of plant genes in bacterial artificial chromosomes (BACs). Coding sequences of fluorescent and affinity tags were inserted into genes and transferred together with flanking genomic sequences of desired size by recombination into Agrobacterium plant transformation vectors using three steps of E. coli transformation with PCR-amplified DNA fragments. Application of fast-track recombineering is illustrated by the simultaneous labelling of CYCLIN-DEPENDENT KINASE D (CDKD) and CYCLIN H (CYCH) subunits of kinase module of TFIIH general transcription factor and the CDKD-activating CDKF;1 kinase with green fluorescent protein (GFP) and mCherry (green and red fluorescent protein) tags, and a PIPL (His18 -StrepII-HA) epitope. Functionality of modified CDKF;1 gene constructs is verified by complementation of corresponding T-DNA insertion mutation. Interaction of CYCH with all three known CDKD homologues is confirmed by their co-localization and co-immunoprecipitation. Affinity purification and mass spectrometry analyses of CDKD;2, CYCH, and DNA-replication-coupled HISTONE H3.1 validate their association with conserved TFIIH subunits and components of CHROMATIN ASSEMBLY FACTOR 1, respectively. The results document that simple modification of plant gene products with suitable tags by fast-track recombineering is well suited to promote a wide range of protein interaction and proteomics studies.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Engenharia Genética/métodos , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromossomos Artificiais Bacterianos/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde , Histonas/genética , Histonas/metabolismo , Proteínas Luminescentes , Mutagênese Insercional , Plantas Geneticamente Modificadas , Recombinação Genética , Proteína Vermelha Fluorescente
5.
Plant Cell Environ ; 40(12): 2958-2971, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28857190

RESUMO

The plant hormone abscisic acid (ABA) plays a crucial role in regulating plant responses to environmental stresses. Interplay of several different proteins including the PYR/PYL/RCAR receptors, A-group PP2C protein phosphatases, SnRK2 protein kinases, and downstream transcription factors regulates ABA signalling. We report here the identification of a family of ABA-induced transcription repressors (AITRs) that act as feedback regulators in ABA signalling. We found that the expression of all the 6 Arabidopsis AITR genes was induced by exogenously ABA, and their expression levels were decreased in ABA biosynthesis mutant aba1-5. BLAST searches showed that AITRs are exclusively present in angiosperms. When recruited to the promoter region of a reporter gene by a fused DNA binding domain, all AITRs inhibited reporter gene expression in transfected protoplasts. In Arabidopsis, aitr mutants showed reduced sensitivity to ABA and to stresses such as salt and drought. Quantitative RT-PCR analysis demonstrated that the ABA-induced response of PP2C and some PYR/PYL/RCAR genes was reduced in AITR5 transgenic plants but increased in an aitr2 aitr5 aitr6 triple mutant. These results provide important new insights into the regulation of ABA signalling in plants, and such information may lead to the production of plants with enhanced resistance to environmental stresses.


Assuntos
Ácido Abscísico/metabolismo , Magnoliopsida/enzimologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/fisiologia , Secas , Regulação da Expressão Gênica de Plantas , Magnoliopsida/genética , Magnoliopsida/fisiologia , Mutação , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Sementes/enzimologia , Sementes/genética , Sementes/fisiologia , Estresse Fisiológico , Fatores de Transcrição/genética
6.
Front Plant Sci ; 6: 1064, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635862

RESUMO

Ethylene regulates many aspects of plant growth and development including seed germination, leaf senescence, and fruit ripening, and of plant responses to environmental stimuli including both biotic and abiotic stresses. Ethylene response factors (ERFs) are plant-specific transcription factors and are a subfamily of the AP2 (APETALA2)/ERF transcription factor family. The function of many members in this large gene family remains largely unknown. ERF96, a member of the Group IX ERF family transcription factors, has recently been shown to be a transcriptional activator that is involved in plant defense response in Arabidopsis. Here we provide evidence that ERF96 is a positive regulator of abscisic acid (ABA) responses. Bioinformatics analysis indicated that there are a total four small ERFs in Arabidopsis including ERF95, ERF96, ERF97, and ERF98, and that ERF96 forms a cluster with ERF95 and ERF97. By using quantitative RT-PCR, we found that ERF96 is expressed in all tissues and organs examined except roots, with relatively high expression in flowers and seeds. Results from the protoplast transfection assay indicated that the EDLL motif-containing C-terminal domain is responsible for ERF96's transcriptional activity. Although loss-of-function mutant of ERF96 was morphologically similar to wild type plants, transgenic plants overexpressing ERF96 had smaller rosette size and were delayed in flowering time. In ABA sensitivity assays, we found that ERF96 overexpression plants were hypersensitive to ABA in terms of ABA inhibition of seed germination, early seedling development and root elongation. Consistent with these observations, elevated transcript levels of some ABA-responsive genes including RD29A, ABI5, ABF3, ABF4, P5CS, and COR15A were observed in the transgenic plants in the presence of ABA. However, in the absence of ABA treatment, the transcript levels of these ABA-responsive genes remained largely unchanged. Our experiments also showed that water loss in ERF96 overexpression plants was slower than that in Col wild type plants. Stomatal closure assays indicated that ERF96 overexpression plants had reduced stomatal aperture in the presence of ABA. Taken together, our results suggest that ERF96 positively regulates ABA responses in Arabidopsis.

7.
Front Plant Sci ; 6: 388, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082787

RESUMO

Aux/IAA proteins are transcriptional repressors that control auxin signaling by interacting with auxin response factors (ARFs). So far all of the identified Aux/IAA mutants with auxin-related phenotypes in Arabidopsis and rice (Oryza sativa) are dominant gain-of-function mutants, with mutations in Domain II that affected stability of the corresponding Aux/IAA proteins. On the other hand, morphological changes were observed in knock-down mutants of Aux/IAA genes in tomato (Solanum lycopersicum), suggesting that functions of Aux/IAA proteins may be specific for certain plant species. We report here the characterization of PtrIAA14.1, a poplar (Populus trichocarpa) homolog of IAA7. Bioinformatics analysis showed that PtrIAA14.1 is a classic Aux/IAA protein. It contains four conserved domains with the repressor motif in Domain I, the degron in Domain II, and the conserved amino acid signatures for protein-protein interactions in Domain III and Domain IV. Protoplast transfection assays showed that PtrIAA14.1 is localized in nucleus. It is unable in the presence of auxin, and it represses auxin response reporter gene expression. Expression of wild-type PtrIAA14.1 in Arabidopsis resulted in auxin-related phenotypes including down-curling leaves, semi-draft with increased number of branches, and greatly reduced fertility, but expression of the Arabidopsis Aux/IAA genes tested remain largely unchanged in the transgenic plants. Protein-protein interaction assays in yeast and protoplasts showed that PtrIAA14.1 interacted with ARF5, but not other ARFs. Consistent with this observation, vascular patterning was altered in the transgenic plants, and the expression of AtHB8 (Arabidopsis thaliana homeobox gene 8) was reduced in transgenic plants.

8.
Front Plant Sci ; 6: 295, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25983737

RESUMO

Plant hormone auxin regulates most, if not all aspects of plant growth and development, including lateral root formation, organ pattering, apical dominance, and tropisms. Peptide hormones are peptides with hormone activities. Some of the functions of peptide hormones in regulating plant growth and development are similar to that of auxin, however, the relationship between auxin and peptide hormones remains largely unknown. Here we report the identification of OsCLE48, a rice (Oryza sativa) CLE (CLAVATA3/ENDOSPERM SURROUNDING REGION) gene, as an auxin response gene, and the functional characterization of OsCLE48 in Arabidopsis and rice. OsCLE48 encodes a CLE peptide hormone that is similar to Arabidopsis CLEs. RT-PCR analysis showed that OsCLE48 was induced by exogenously application of IAA (indole-3-acetic acid), a naturally occurred auxin. Expression of integrated OsCLE48p:GUS reporter gene in transgenic Arabidopsis plants was also induced by exogenously IAA treatment. These results indicate that OsCLE48 is an auxin responsive gene. Histochemical staining showed that GUS activity was detected in all the tissue and organs of the OsCLE48p:GUS transgenic Arabidopsis plants. Expression of OsCLE48 under the control of the 35S promoter in Arabidopsis inhibited shoot apical meristem development. Expression of OsCLE48 under the control of the CLV3 native regulatory elements almost completely complemented clv3-2 mutant phenotypes, suggesting that OsCLE48 is functionally similar to CLV3. On the other hand, expression of OsCLE48 under the control of the 35S promoter in Arabidopsis has little, if any effects on root apical meristem development, and transgenic rice plants overexpressing OsCLE48 are morphologically indistinguishable from wild type plants, suggesting that the functions of some CLE peptides may not be fully conserved in Arabidopsis and rice. Taken together, our results showed that OsCLE48 is an auxin responsive peptide hormone gene, and it regulates shoot apical meristem development when expressed in Arabidopsis.

9.
Front Plant Sci ; 6: 1156, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734051

RESUMO

Auxin/Indole-3-Acetic Acid (Aux/IAA) genes are early auxin response genes ecoding short-lived transcriptional repressors, which regulate auxin signaling in plants by interplay with Auxin Response Factors (ARFs). Most of the Aux/IAA proteins contain four different domains, namely Domain I, Domain II, Domain III, and Domain IV. So far all Aux/IAA mutants with auxin-related phenotypes identified in both Arabidopsis and rice (Oryza sativa) are dominant gain-of-function mutants with mutations in Domain II of the corresponding Aux/IAA proteins, suggest that Aux/IAA proteins in both Arabidopsis and rice are largely functional redundantly, and they may have conserved functions. We report here the functional characterization of a rice Aux/IAA gene, OsIAA9. RT-PCR results showed that expression of OsIAA9 was induced by exogenously applied auxin, suggesting that OsIAA9 is an auxin response gene. Bioinformatic analysis showed that OsIAA9 has a repressor motif in Domain I, a degron in Domain II, and the conserved amino acid signatures for protein-protein interactions in Domain III and Domain IV. By generating transgenic plants expressing GFP-OsIAA9 and examining florescence in the transgenic plants, we found that OsIAA9 is localized in the nucleus. When transfected into protoplasts isolated from rosette leaves of Arabidopsis, OsIAA9 repressed reporter gene expression, and the repression was partially released by exogenously IAA. These results suggest that OsIAA9 is a canonical Aux/IAA protein. Protoplast transfection assays showed that OsIAA9 interacted ARF5, but not ARF6, 7, 8 and 19. Transgenic Arabidopsis plants expressing OsIAA9 have increased number of lateral roots, and reduced gravitropic response. Further analysis showed that OsIAA9 transgenic Arabidopsis plants accumulated fewer granules in their root tips and the distribution of granules was also affected. Taken together, our study showed that OsIAA9 is a transcriptional repressor, and it regulates gravitropic response when expressed in Arabidopsis by regulating granules accumulation and distribution in root tips.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...