Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Med Sci ; 21(6): 1003-1015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774754

RESUMO

Objective: Asthma is a chronic heterogeneous airway disease, and imbalanced T-helper type 1 (Th1) and Th2 cell-mediated inflammation contribute to its pathogenesis. Although it has been suggested that androgen and estrogen were involved in development of asthma, the underlying mechanisms remained largely unclear. Studies have demonstrated that Runx3 could promote naive CD4+ T cells to differentiate into Th1 cells. Hence, our study aimed to explore the potential regulatory mechanism of androgen and estrogen on asthma via modulating Runx3. Methods: First, clinical assessments and pulmonary function tests were conducted on 35 asthma patients and 24 healthy controls. The concentrations of androgen, estrogen, and androgen estrogen ratios were assessed in peripheral blood samples of asthma patients and healthy controls. Then, a murine asthma model was established to explore the effects of estrogen and androgen (alone or in combination) on asthma. Third, an in vitro assay was used to explore the mechanism of combination of androgen and estrogen in asthma. Results: We observed decreased androgen and increased estrogen levels in asthma patients compared with healthy controls. In mice with experimental asthma, there were increased serum concentrations of estrogen and decreased serum concentrations of androgen, intervention with combination of androgen and estrogen alleviated airway inflammations, increased Runx3 expressions and elevated Th1 differentiation. In CD4+ T cells co-cultured with bronchial epithelial cells (BECs), treatment with androgen plus estrogen combination promoted Th1 differentiation, which was mitigated by Runx3 knockdown in BECs and enhanced by Runx3 overexpression. Conclusion: These findings suggest that androgen estrogen combination modulate the Th1/Th2 balance via regulating the expression of Runx3 in BECs, thereby providing experimental evidence supporting androgen and estrogen combination as a novel therapy for asthma.


Assuntos
Androgênios , Asma , Subunidade alfa 3 de Fator de Ligação ao Core , Estrogênios , Asma/tratamento farmacológico , Asma/imunologia , Asma/sangue , Humanos , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Animais , Camundongos , Feminino , Androgênios/sangue , Masculino , Adulto , Células Th1/imunologia , Células Th1/efeitos dos fármacos , Modelos Animais de Doenças , Pessoa de Meia-Idade , Diferenciação Celular/efeitos dos fármacos , Células Th2/imunologia , Células Th2/efeitos dos fármacos , Estudos de Casos e Controles
2.
Environ Toxicol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567514

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) presents a significant clinical challenge, particularly due to its high propensity for locoregional recurrence. Current research underscores the need to unravel the complex interactions within the tumor microenvironment. This study addresses the critical gap in understanding how FOS modulates the immune landscape in HNSCC, with a focus on its influence on fibroblast and myeloid cell dynamics. METHODS: Employing a comprehensive approach, we analyzed tissue samples from HNSCC patients and adjacent non-cancerous tissues using bulk RNA sequencing complemented by in-depth bioinformatics analyses, including gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and immune infiltration assessment. A pivotal aspect of our research involved dissecting single-cell RNA-seq data from GSE234933 to elucidate the cell-type-specific expression of FOS. RESULTS: We found that FOS expression varies significantly in different cell populations in the HNSCC tumor microenvironment, especially in fibroblasts and myeloid cells. This expression difference may reflect the different roles of these cells in tumor progression and their impact on the tumor microenvironment. CONCLUSION: Our results uncover a significant correlation between FOS expression and key immune and hypoxia-related pathways, suggesting its integral role in the tumor microenvironment. These findings not only enhance our understanding of HNSCC pathogenesis but also highlight FOS as a potential therapeutic target. This study marks a significant step towards addressing the urgent need for targeted interventions in HNSCC, particularly in the context of locoregional recurrence.

3.
Opt Express ; 32(5): 7564-7573, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439434

RESUMO

Cladding-pumped multicore erbium-doped fiber is an important element for future spatial division multiplexing (SDM) amplification. We propose an M-type erbium-doped multicore fiber to achieve high-efficiency SDM amplification. The performance of cladding-pumped erbium-doped fiber with a central refractive index depression has been investigated, and the M-type fiber has better amplification performance than conventional fibers by reducing the signal mode overlap with the doped region. The experiment results show that the M-type 4-core erbium-doped fiber has a gain improvement of 2.8 dB compared with conventional 4-core fiber. The pump conversion efficiency (PCE) has been enhanced from 4.47% to 8.01%. For a 7.0 W pump power at 976 nm, the M-type fiber exhibits an average gain of 20.0 dB and an average noise fiber of 6.8 dB at the L-band. The core-to-core gain variation is less than 1.6 dB.

4.
J Appl Genet ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421592

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignant tumor with significant morbidity and mortality. Understanding the molecular mechanisms of HNSCC and identifying prognostic markers and therapeutic targets are crucial for improving patient outcomes. In this study, we utilized single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data to comprehensively analyze HNSCC at the cellular level. We identified keratinocytes as the predominant cell type in tumor samples, suggesting their potential role in HNSCC development. Through hdWGCNA co-expression network analysis, we identified gene modules associated with HNSCC progression. Furthermore, we constructed a prognostic model based on specific genes and demonstrated its robust predictive performance in multiple datasets. The model exhibited strong correlations with immune cell infiltration patterns and signaling pathways related to tumor progression. Additionally, drug sensitivity analysis revealed potential chemotherapeutic targets for HNSCC treatment. Our findings provide valuable insights into the molecular characteristics and immune microenvironment of HNSCC, offering new perspectives for prognosis prediction and therapeutic interventions in clinical practice. Further research is warranted to validate and expand upon these findings, ultimately improving patient outcomes in HNSCC.

5.
Opt Lett ; 49(2): 314-317, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194557

RESUMO

Bismuth-doped germanosilicate fiber (BGSF), the active media of fiber amplifiers, has attracted widespread attention. Here, we report a BGSF with a high bismuth concentration of 0.075 wt. % and achieve high-efficiency E + S-band amplification, which was prepared by the modified chemical vapor deposition (MCVD) process. The small signal absorption (SSA) and unsaturated loss (UL) of BGSF at 1310 nm are 1.32 and 0.11 dB/m, respectively. The results show a record with only 45 m BGSF was created, to the best of our knowledge, which provides a maximum gain of 39.24 dB with an NF of 6.2 dB at 1430 nm under -20 dBm input signal power.

6.
Discov Oncol ; 15(1): 22, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294629

RESUMO

The global prevalence of head and neck malignancies positions them as the sixth most common form of cancer, with the head and neck squamous cell carcinoma (HNSCC) representing the predominant histological subtype. Despite advancements in multidisciplinary approaches and molecular targeted therapies, the therapeutic outcomes for HNSCC have only marginally improved, particularly in cases of recurrent or metastatic HNSCC (R/MHNSCC). This situation underscores the critical necessity for the development of innovative therapeutic strategies. Such strategies are essential not only to enhance the efficacy of HNSCC treatment but also to minimize the incidence of associated complications, thus improving overall patient prognosis. Cancer immunotherapy represents a cutting-edge cancer treatment that leverages the immune system for targeting and destroying cancer cells. It's applied to multiple cancers, including melanoma and lung cancer, offering precision, adaptability, and the potential for long-lasting remission through immune memory. It is observed that while HNSCC patients responsive to immunotherapy often experience prolonged therapeutic benefits, only a limited subset demonstrates such responsiveness. Additionally, significant clinical challenges remain, including the development of resistance to immunotherapy. The biological characteristics, dynamic inhibitory changes, and heterogeneity of the tumor microenvironment (TME) in HNSCC play critical roles in its pathogenesis, immune evasion, and therapeutic resistance. This review aims to elucidate the functions and mechanisms of anti-tumor immune cells and extracellular components within the HNSCC TME. It also introduces several immunosuppressive agents commonly utilized in HNSCC immunotherapy, examines factors influencing the effectiveness of these treatments, and provides a comprehensive summary of immunotherapeutic strategies relevant to HNSCC.

7.
Opt Lett ; 49(1): 61-64, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134152

RESUMO

Extending the gain bandwidth of L-band optical fiber amplifier has provoked a widespread interest. To date, achieving a high-efficiency extended L-band amplification remains a challenge. Here, we report a cladding-pumped Er/Yb co-doped alumino-phosphosilicate fiber, prepared by the modified chemical vapor deposition process. We demonstrate the efficiency of alumino-phosphosilicate glass for cladding-pumped Er/Yb co-doped fiber, with a gain per unit fiber length of 0.45 dB/m at 1625 nm and a gain ripple of ∼9.4 dB. For 0.8 W pump power, the fiber exhibits a 20 dB gain bandwidth covering 1575-1625 nm and 6.9 dB noise figure at 1625 nm. Additionally, the utilization of multi-mode laser diode enables further significant power savings and cost reduction. To the best of our knowledge, Er/Yb co-doped fiber in alumino-phosphosilicate glass is first proposed, with a cladding-pumped scheme for enhancing an extended L-band performance.

8.
Life Sci ; 333: 122148, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37805166

RESUMO

AIMS: To investigate the role and mechanisms of methyltransferase-like 3 (METTL3) in the pathogenesis of lipopolysaccharide (LPS)-induced acute lung injury (ALI). MAIN METHODS: LPS intratracheally instillation was applied in alveolar epithelial cell METTL3 conditional knockout (METTL3-CKO) mice and their wild-type littermates. In addition, METTL3 inhibitor STM2457 was used. LPS treatment on mouse lung epithelial 12 (MLE-12) cell was applied to establish an in vitro model of LPS-induced ALI. H&E staining, lung wet-to-dry ratio, and total broncho-alveolar lavage fluid (BALF) concentrations were used to evaluate lung injury. Overall, the m6A level was determined with the m6A RNA Methylation Quantification Kit and dot blot assay. Expression of METTL3 and neprilysin were measured with immunohistochemistry, immunofluorescence, immunofluorescence-fluorescence in situ hybridization, and western blot. Apoptosis was detected with TUNEL, western blot, and flow cytometry. The interaction of METTL3 and neprilysin was determined with RIP-qPCR and MeRIP. KEY FINDINGS: METTL3 expression and apoptosis were increased in alveolar epithelial cells of mice treated with LPS, and METTL3-CKO or METTL3 inhibitor STM2457 could alleviate apoptosis and LPS-induced ALI. In MLE-12 cells, LPS-Induced METTL3 expression and apoptosis. Knockdown of METTL3 alleviated, while overexpression of METTL3 exacerbated LPS-induced apoptosis. LPS treatment reduced neprilysin expression, the intervention of neprilysin expression negatively regulated apoptosis without affecting METTL3 expression, and mitigated the promoting effect of METTL3 on LPS-induced apoptosis. Additionally, METTL3 could bind to the mRNA of neprilysin, and reduce its expression. SIGNIFICANCE: Our findings revealed that inhibition of METTL3 could exert anti-apoptosis and ALI-protective effects via restoring neprilysin expression.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Animais , Camundongos , Lesão Pulmonar Aguda/metabolismo , Células Epiteliais Alveolares/metabolismo , Apoptose , Hibridização in Situ Fluorescente , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Neprilisina
9.
Opt Express ; 31(16): 25557-25570, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710439

RESUMO

The extended L-band 4-core Er/Yb co-doped fiber and amplifier (MC-EYDFA) is first proposed and demonstrated, to the best of our knowledge, for space division multiplexing combined with wavelength division multiplexing application. The fiber core co-doped with Er/Yb/P is adopted for bandwidth expansion, and the long wavelength extends to 1625 nm. Numerical simulations further show that efficient amplification and higher saturation power are achieved with the 1018 nm cladding pumping. Based on the integrated 4-core fiber amplifier, an average gain of ∼22 dB covering 1575-1625 nm is experimentally obtained with a 4 W pump power and a 3 dBm total signal power, and the max core-dependent gain (CDG) variation is measured to be 1.7 dB.

10.
Opt Lett ; 48(11): 3027-3030, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262272

RESUMO

The 1.5-µm fiber laser is widely used in the fields of laser lidar, remote sensing, and gas monitoring because of its advantages of being eye-safe and exhibiting low atmospheric transmission loss. However, due to the ∼1-µm amplified spontaneous emission (ASE) of the Er/Yb co-doped fiber (EYDF), it is difficult to improve the laser power. Here, we simulated the effect of the Er3+ concentration and the seed power on ∼1-µm ASE, and fabricated a large mode area EYDF by the modified chemical vapor deposition process. Additionally, a piece of ytterbium-doped fiber was introduced into the master oscillator power amplifier (MOPA) configuration to absorb the generated ∼1-µm ASE simultaneously. Experimental results show that an output power of 345 W with a slope efficiency of 43% at 1535 nm is obtained in an all-fiber configuration, profiting from effective suppression of ∼ 1-µm ASE. To the best of our knowledge, this is the highest output power available with an Er/Yb co-doped fiber from an all-fiber MOPA configuration.

11.
BMC Med Genomics ; 16(1): 110, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210507

RESUMO

OBJECTIVE: To identify the genetic mechanisms underlying lipid metabolism-mediated tumor immunity in head and neck squamous carcinoma (HNSC). MATERIALS AND METHODS: RNA sequencing data and clinical characteristics of HNSC patients were procured from The Cancer Genome Atlas (TCGA) database. Lipid metabolism-related genes were collected from KEGG and MSigDB databases. Immune cells and immune-related genes were obtained from the TISIDB database. The differentially expressed genes (DEGs) in HNSC were identified and weighted correlation network analysis (WGCNA) was performed to identify the significant gene modules. Lasso regression analysis was performed to identify hub genes. The differential gene expression pattern, diagnostic values, relationships with clinical features, prognostic values, relationships with tumor mutation burden (TMB), and signaling pathways involved, were each investigated. RESULTS: One thousand six hundred sixty-eight DEGs were identified as dysregulated between HNSC tumor samples and healthy control head and neck samples. WGCNA analysis and Lasso regression analysis identified 8 hub genes, including 3 immune-related genes (PLA2G2D, TNFAIP8L2 and CYP27A1) and 5 lipid metabolism-related genes (FOXP3, IL21R, ITGAL, TRAF1 and WIPF1). Except CYP27A1, the other hub genes were upregulated in HNSC as compared with healthy control samples, and a low expression of these hub genes indicated a higher risk of death in HNSC. Except PLA2G2D, all other hub genes were significantly and negatively related with TMB in HNSC. The hub genes were implicated in several immune-related signaling pathways including T cell receptor signaling, Th17 cell differentiation, and natural killer (NK) cell mediated cytotoxicity. CONCLUSION: Three immune genes (PLA2G2D, TNFAIP8L2, and CYP27A1) and immune-related pathways (T cell receptor signaling, Th17 cell differentiation, and natural killer (NK) cell mediated cytotoxicity) were predicted to play significant roles in the lipid metabolism-mediated tumor immunity in HNSC.


Assuntos
Neoplasias de Cabeça e Pescoço , Metabolismo dos Lipídeos , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Metabolismo dos Lipídeos/genética , Biomarcadores Tumorais/genética , Neoplasias de Cabeça e Pescoço/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Prognóstico , Proteínas do Citoesqueleto/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular
12.
Clin Exp Med ; 23(6): 2839-2854, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36961677

RESUMO

Th17 (T-helper 17) cells subtype of non-T2 (non-type 2) asthma is related to neutrophilic infiltration and resistance to inhaled corticosteroids (ICS), so is also known as severe asthma. Methyl-CpG binding domain protein 2 (MBD2) regulates the differentiation of the Th17 cells, tending to show a therapeutic target in severe asthma. miR-146a-3p is associated with anti-inflammatory characteristics and immunity. Moreover, bioinformatic analysis showed that MBD2 may be a target gene of miR-146a-3p. However, the role of miR-146a-3p in the differentiation of Th17 cells via MBD2 in severe asthma remains unknown. Here, we aimed to explore how miR-146a-3p interacts with MBD2 and affects the differentiation of Th17 cells in severe asthma. First, we recruited 30 eligible healthy people and 30 patients with severe asthma to detect the expression of miR-146a-3p in peripheral blood mononuclear cells (PBMCs) by qRT-PCR. Then, we established a HDM/LPS (house dust mite/lipopolysaccharide) exposure model of bronchial epithelial cells (BECs) to evaluate the expression of miR-146a-3p, the interaction between miR-146a-3p and MBD2 using western blot and luciferase reporter analysis and the effect of miR-146a-3p regulated Th17 cells differentiation by flow cytometry in BECs in vitro. Finally, we constructed a mouse model of Th17 predominant neutrophilic severe asthma to assess the therapeutic potential of miR-146a-3p in severe asthma and the effect of miR-146a-3p regulated Th17 cells differentiation via MBD2 in vivo. Decreased miR-146a-3p expression was noted in severe asthma patients, in the BECs and in the animal severe asthma models. Moreover, we demonstrated that miR-146a-3p suppressed Th17 cells differentiation by targeting the MBD2. miR-146a-3p overexpression significantly reduced airway hyperresponsiveness, airway inflammation and airway mucus secretion, while also inhibiting Th17 cells response in vivo, which relieved severe asthma. By targeting MBD2 to suppress Th17 cells differentiation, miR-146a-3p provides a potential novel therapeutic for Th17 predominant neutrophilic severe asthma.


Assuntos
Asma , MicroRNAs , Animais , Humanos , Camundongos , Asma/tratamento farmacológico , Asma/genética , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Leucócitos Mononucleares , MicroRNAs/genética , Células Th17
13.
World Neurosurg ; 175: e55-e63, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36907270

RESUMO

BACKGROUND: Diabetes insipidus (DI) is a common complication after endoscopic transsphenoidal surgery (TSS) for pituitary adenoma (PA), which affects the quality of life in patients. Therefore, there is a need to develop prediction models of postoperative DI specifically for patients who undergo endoscopic TSS. This study establishes and validates prediction models of DI after endoscopic TSS for patients with PA using machine learning algorithms. METHODS: We retrospectively collected information about patients with PA who underwent endoscopic TSS in otorhinolaryngology and neurosurgery departments between January 2018 and December 2020. The patients were randomly split into a training set (70%) and a test set (30%). The 4 machine learning algorithms (logistic regression, random forest, support vector machine, and decision tree) were used to establish the prediction models. Area under the receiver operating characteristic curves were calculated to compare the performance of the models. RESULTS: A total of 232 patients were included, and 78 patients (33.6%) developed transient DI after surgery. Data were randomly divided into a training set (n = 162) and a test set (n = 70) for development and validation of the model, respectively. The area under the receiver operating characteristic curve was highest in the random forest model (0.815) and lowest in the logistic regression model (0.601). Invasion of pituitary stalk was the most important feature for model performance, closely followed by macroadenomas, size classification of PA, tumor texture, and Hardy-Wilson suprasellar grade. CONCLUSIONS: Machine learning algorithms identify preoperative features of importance and reliably predict DI after endoscopic TSS for patients with PA. Such a prediction model may enable clinicians to develop individualized treatment strategy and follow-up management.


Assuntos
Adenoma , Diabetes Insípido , Diabetes Mellitus , Neoplasias Hipofisárias , Humanos , Neoplasias Hipofisárias/cirurgia , Neoplasias Hipofisárias/complicações , Estudos Retrospectivos , Qualidade de Vida , Adenoma/cirurgia , Adenoma/complicações , Diabetes Insípido/diagnóstico , Diabetes Insípido/etiologia , Aprendizado de Máquina , Complicações Pós-Operatórias/etiologia
14.
Sci Rep ; 13(1): 1035, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658236

RESUMO

Smoking is a trigger for asthma, which has led to an increase in asthma incidence in China. In smokers, asthma management starts with smoking cessation. Data on predictors of smoking cessation in Chinese patients with asthma are scarce. The objective of this study was to find the differences in clinical characteristics between current smokers and former smokers with asthma in order to identify factors associated with smoking cessation. Eligible adults with diagnosed asthma and smoking from the hospital outpatient clinics (n = 2312) were enrolled and underwent a clinical evaluation, asthma control test (ACT), and pulmonary function test. Information on demographic and sociological data, lung function, laboratory tests, ACT and asthma control questionnaire (ACQ) scores was recorded. Patients were divided into a current smokers group and a former smokers group based on whether they had quit smoking. Logistic regression analysis was used to analyze the factors associated with smoking cessation. Of all patients with asthma, 34.6% were smokers and 65.4% were former smokers, and the mean age was 54.5 ± 11.5 years. Compared with current smokers, the former smokers were older, had longer duration of asthma, had higher ICS dose, had more partially controlled and uncontrolled asthma, had more pack-years, had smoked for longer, and had worse asthma control. The logistic regression model showed that smoking cessation was positively correlated with age, female sex, pack-years, years of smoking, partially controlled asthma, uncontrolled asthma, and body mass index (BMI), but was negatively correlated with ACT, FEV1, FEV1%predicted, and widowed status. More than 30% of asthma patients in the study were still smoking. Among those who quit smoking, many quit late, often not realizing they need to quit until they have significant breathing difficulties. The related factors of smoking cessation identified in this study indicate that there are still differences between continuing smokers and former smokers, and these factors should be focused on in asthma smoking cessation interventions to improve the prognosis of patients with asthma.


Assuntos
Asma , Abandono do Hábito de Fumar , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Asma/epidemiologia , Estudos Transversais , Fumantes , Fumar/efeitos adversos , Fumar/epidemiologia , Masculino
15.
Exp Mol Med ; 54(11): 2077-2091, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36443565

RESUMO

Necroptosis is the major cause of death in alveolar epithelial cells (AECs) during acute lung injury (ALI). Here, we report a previously unrecognized mechanism for necroptosis. We found an accumulation of mitochondrial citrate (citratemt) in lipopolysaccharide (LPS)-treated AECs because of the downregulation of Idh3α and citrate carrier (CIC, also known as Slc25a1). shRNA- or inhibitor-mediated inhibition of Idh3α and Slc25a1 induced citratemt accumulation and necroptosis in vitro. Mice with AEC-specific Idh3α and Slc25a1 deficiency exhibited exacerbated lung injury and AEC necroptosis. Interestingly, the overexpression of Idh3α and Slc25a1 decreased citratemt levels and rescued AECs from necroptosis. Mechanistically, citratemt accumulation induced mitochondrial fission and excessive mitophagy in AECs. Furthermore, citratemt directly interacted with FUN14 domain-containing protein 1 (FUNDC1) and promoted the interaction of FUNDC1 with dynamin-related protein 1 (DRP1), leading to excessive mitophagy-mediated necroptosis and thereby initiating and promoting ALI. Importantly, necroptosis induced by citratemt accumulation was inhibited in FUNDC1-knockout AECs. We show that citratemt accumulation is a novel target for protection against ALI involving necroptosis.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Camundongos , Animais , Células Epiteliais Alveolares/metabolismo , Lipopolissacarídeos/efeitos adversos , Necroptose , Ácido Cítrico/efeitos adversos , Ácido Cítrico/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Membrana/metabolismo
16.
Opt Express ; 30(19): 34973-34983, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242500

RESUMO

A cladding-pumped 4-core erbium-doped fiber (4C-EDF) with a pedestal structure has been firstly, to the best of our knowledge, proposed and fabricated for space division multiplexing (SDM) amplification. The numerical simulation shows that the index-raised pedestal around the fiber core can improve power conversion efficiency (PCE) by enhancing pump power usage. Compared with conventional 4C-EDF, the 4C-EDF with a pedestal has a gain improvement of 4.5 dB and a PCE enhancement of 91.8%, according to the experimental results (pedestal fiber: 9.55%, conventional fiber: 4.98%). For a 6 dBm total input signal power at L-band and a 7.8 W pump power at 976 nm, the pedestal 4C-EDF shows an average gain of 25 dB and an average noise figure (NF) of 6.5 dB over all cores in the wavelength range of 1570.41 nm to 1610.87 nm. The core-to-core gain variation is less than 2 dB.

17.
Front Genet ; 13: 959059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36303542

RESUMO

Objectives: .Asthma is a highly heterogeneous disease, and T-helper cell type 17 (Th17) cells play a pathogenic role in the development of non-T2 severe asthma. Misshapen like kinase 1 (MINK1) is involved in the regulation of Th17 cell differentiation, but its effect on severe asthma remains unclear. Our previous studies showed that methyl-CpG binding domain protein 2 (MBD2) expression was significantly increased in patients with Th17 severe asthma and could regulate Th17 cell differentiation. The aim of this study was to investigate how MBD2 interacts with MINK1 to regulate Th17 cell differentiation in Th17-dominant asthma. Materials and methods: Female C57BL/6 mice and bronchial epithelial cells (BECs) were used to establish mouse and cell models of Th17-dominant asthma, respectively. Flow cytometry was used to detect Th17 cell differentiation, and the level of IL-17 was detected by enzyme-linked immunosorbent assay (ELISA). Western blot and quantitative real-time PCR (qRT-PCR) were used to detect MBD2 and MINK1 expression. To investigate the role of MBD2 and MINK1 in Th17 cell differentiation in Th17-dominant asthma, the MBD2 and MINK1 genes were silenced or overexpressed by small interfering RNA and plasmid transfection. Results: Mouse and BEC models of Th17-dominant asthma were established successfully. The main manifestations were increased neutrophils in BALF, airway hyperresponsiveness (AHR), activated Th17 cell differentiation, and high IL-17 levels. The expression of MBD2 in lung tissues and BECs from the Th17-dominant asthma group was significantly increased, while the corresponding expression of MINK1 was significantly impaired. Through overexpression or silencing of MBD2 and MINK1 genes, we have concluded that MBD2 and MINK1 regulate Th17 cell differentiation and IL-17 release. Interestingly, MBD2 was also found to negatively regulate the expression of MINK1. Conclusion: Our findings have revealed new roles for MBD2 and MINK1, and provide new insights into epigenetic regulation of Th17-dominant asthma, which is dominated by neutrophils and Th17 cells. This study could lead to new therapeutic targets for patients with Th17-dominant asthma.

18.
Oxid Med Cell Longev ; 2022: 3096528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36062195

RESUMO

T helper 17 (Th17) cells subtype of non-T2 asthma is less responsive (resistant) to inhaled corticosteroids (ICS), so also called severe asthma. Methyl-CpG-binding domain protein 2 (MBD2) regulates the differentiation of the Th17 cells, showing the possibility of a therapeutic target in severe asthma. Androgen tends to show beneficial therapeutic effects and is a "hot research topic," but its role in the differentiation and expression of Th17 cells via MBD2 is still unknown. The aim of this study was to evaluate how sex hormone interacts with MBD2 and affects the differentiation and expression of Th17 cells in severe asthma. Here, first, we measured the concentration of androgen, estrogen, and androgen estrogen ratio from subjects and correlated it with severe asthma status. Then, we established an animal model and bronchial epithelial cells (BECs) model of severe asthma to evaluate the role of MBD2 in the differentiation and expression of Th17 cells (IL-17), the therapeutic potential of sex hormones in severe asthma, and the effect of sex hormones in BECs regulated Th17 cells differentiation via MBD2 at the cellular level. Increased MBD2 expression and Th17 cells differentiation were noted in the animal and the BECs severe asthma models. Th17 cell differentiation and expression were MBD2 dependent. Androgen attenuated the differentiation of BECs regulated Th17 cells via MBD2 showing BECs as a therapeutic target of androgen, and these findings postulate the novel role of androgen in Th17 cells predominant neutrophilic severe asthma therapy through targeting MBD2.


Assuntos
Asma , Células Th17 , Androgênios/farmacologia , Animais , Asma/tratamento farmacológico , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Células Epiteliais , Estrogênios , Humanos
19.
Front Genet ; 13: 940292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873463

RESUMO

Objective: Whole-exome sequencing (WES) based copy number variation (CNV) analysis has been reported to improve the diagnostic rate in rare genetic diseases. In this study, we aim to find the disease-associated variants in a highly suspected primary ciliary dyskinesia (PCD) patient without a genetic diagnosis by routine WES analysis. Methods: We identified the CNVs using the "Exomedepth" package in an undiagnosed PCD patient with a negative result through routine WES analysis. RNA isolation, PCR amplification, and Sanger sequencing were used to confirm the variant. High-speed video microscopy analysis (HSVA) and immunofluorescence analysis were applied to detect the functional and structural deficiency of nasal cilia and sperm flagella. Papanicolaou staining was employed to characterize the morphology of sperm flagella. Results: NC_000002.11(NM_145038.5): g.26635488_26641606del, c.156-1724_244-2550del, r.156_243del, p. (Glu53Asnfs*13), a novel DRC1 homozygous CNV, was identified by WES-based CNV analysis rather than routine variants calling, in a patient from a non-consanguineous family. HSVA results showed no significant change in ciliary beating frequency but with reduced beating amplitude compared with normal control, and his spermatozoa were almost immotile. The diagnosis of multiple morphological abnormalities of the sperm flagella (MMAF) was established through sperm motility and morphology analysis. PCR amplification and Sanger sequencing confirmed the novel variant of DRC1. Immunofluorescence showed that both cilia and sperm flagella were deficient in protein expression related to the dynein regulatory complex. Conclusion: This report identifies a novel DRC1 disease-associated variant by WES-based CNV analysis from a highly suspected PCD patient with MMAF. Our findings not only expand the genetic spectrum of PCD with MMAF but suggest that in combination with CNV analysis might improve the efficiency of genetic tests.

20.
Dis Markers ; 2022: 2561673, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664436

RESUMO

Objective: This study is aimed at investigating the regulating mechanisms of the interferon regulatory factor (IRF) family genes in head and neck squamous cell carcinoma. Methods: Based on the HNSC data in the 'The Cancer Genome Atlas (TCGA)' database, the expression pattern of IRF family genes was investigated. The association of IRFs family genes and survival outcomes were analyzed by Kaplan-Meier plotter web portal. The relation of IRF genes and tumor stages was evaluated by using stage plots and based on GEPIA portal. 50 genes interacting with IRFs were identified using the NetworkAnalyst's protein-protein interaction (PPI) network construction tool. The top 200 correlated genes with similar expression patterns in HNSC were obtained by the similar gene detection module of GEPIA. Furthermore, functional enrichment analysis was performed to determine the biological functions enriched by the interacting and correlated genes. The potential implication of IRFs in tumor immunity was investigated in terms of tumor-infiltrating immune cells, a pair of immune checkpoint genes (CD274 and PDCD1), and ESTIMATE-Stromal-Immune score. Results: The unpaired sample analysis shows that all of the IRF family genes were highly expressed in HNSC tumor samples compared to control samples. The survival analysis results showed that the overexpression of IRF1, IRF4, IRF5, IRF6, IRF8, and IRF9 was associated with better overall survival in HNSC, while the other IRFs genes (IRF2, IRF3. and IRF7) did not show prognostic values for overall survival outcome of HNSC. Four genes (STAT1, STAT2, FOXP3, and SPI1) were overlapping among 50 interacted genes in the PPI network and top 200 correlated genes identified by GEPIA. The 50 interacting genes in the PPI network and top 200 correlated genes were integrated into 246 genes. These 246 genes were found to be overrepresented in multiple KEGG pathways, e.g., Th17 cell differentiation, T cell receptor signaling pathway, cytokine-cytokine receptor interaction, natural killer (NK) cell-mediated cytotoxicity, FOXO signaling, PI3K-Akt signaling, and ErbB signaling. Most correlations between IRF gene members and TIICs were positive. The strongest positive correlation was identified between IRF8 and T cells (r = 0.849, p < 0.001). The majority of correlation between IRF family genes and ESTIMATE-Stromal-Immune score was found to be positive. The highest positive correlation was found to be between IRF8 and Immune score (r = 0.874, p = 1.09E - 158). Most correlations between IRFs and two immunoinhibitor genes (CD274 and PDCD1) were positive. IRF1 and PDCD1 were found to show the highest positive correlation (r = 0.764, p < 2.2e - 16). Conclusions: The current analysis showed IRFs were differentially expressed in HNSC, indicated significant prognostic values, were involved in tumor immunity-related signaling pathways, and significantly regulated tumor-infiltrating immune cells. IRF family genes could be potential therapeutic biomarkers in targeting tumor immunity of head and neck cancer.


Assuntos
Neoplasias de Cabeça e Pescoço , Fosfatidilinositol 3-Quinases , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...