Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Molecules ; 29(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474675

RESUMO

Lithium-sulfur batteries (LSBs) are considered a promising candidate for next-generation energy storage devices due to the advantages of high theoretical specific capacity, abundant resources and being environmentally friendly. However, the severe shuttle effect of polysulfides causes the low utilization of active substances and rapid capacity fading, thus seriously limiting their practical application. The introduction of conductive polymer-based interlayers between cathodes and separators is considered to be an effective method to solve this problem because they can largely confine, anchor and convert the soluble polysulfides. In this review, the recent progress of conductive polymer-based interlayers used in LSBs is summarized, including free-standing conductive polymer-based interlayers, conductive polymer-based interlayer modified separators and conductive polymer-based interlayer modified sulfur electrodes. Furthermore, some suggestions on rational design and preparation of conductive polymer-based interlayers are put forward to highlight the future development of LSBs.

3.
Animals (Basel) ; 14(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396529

RESUMO

Cadmium (Cd) pollution has become a global issue due to industrial and agricultural developments. However, the molecular mechanism of Cd-induced detrimental effects and relevant signal transduction/metabolic networks are largely unknown in marine fishes. Here, greenfin horse-faced filefish (Thamnaconus septentrionalis) were exposed to 5.0 mg/L Cd up to 7 days. We applied both biochemical methods and multi-omics techniques to investigate how the gills respond to Cd exposure. Our findings revealed that Cd exposure caused the formation of reactive oxygen species (ROS), which in turn activated the MAPK and apoptotic pathways to alleviate oxidative stress and cell damage. Glycolysis, protein degradation, as well as fatty acid metabolism might assist to meet the requirements of nutrition and energy under Cd stress. We also found that long-term (7 days, "long-term" means compared to 12 and 48 h) Cd exposure caused the accumulation of succinate, which would in turn trigger an inflammatory response and start an immunological process. Moreover, ferroptosis might induce inflammation. Overall, Cd exposure caused oxidative stress, energy metabolism disturbance, and immune response in greenfin horse-faced filefish. Our conclusions can be used as references for safety risk assessment of Cd to marine economic fishes.

4.
Commun Biol ; 6(1): 1186, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990058

RESUMO

The deep sea harbours microorganisms with unique life characteristics and activities due to adaptation to particular environmental conditions, but the limited sample collection and pure culture techniques available constrain the study of deep-sea microorganisms. In this study, strain Ant34-E75 was isolated from Antarctic deep-sea sediment samples and showed the highest 16 S rRNA gene sequence similarity (97.18%) with the strain Aequorivita viscosa 8-1bT. Strain Ant34-E75 is psychrotrophic and can effectively increase the cold tolerance of Chlamydomonas reinhardtii (a model organism). Subsequent transcriptome analysis revealed multiple mechanisms involved in the Ant34-E75 response to temperature stress, and weighted gene co-expression network analysis (WGCNA) showed that the peptidoglycan synthesis pathway was the key component. Overall, this study provides insights into the characteristics of a deep-sea microorganism and elucidates mechanisms of temperature adaptation at the molecular level.


Assuntos
Ácidos Graxos , Água do Mar , Ácidos Graxos/análise , Temperatura , Composição de Bases , Temperatura Baixa , Filogenia
5.
Animals (Basel) ; 13(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37893984

RESUMO

Local adaptation has been increasingly involved in the designation of species conservation strategies to response to climate change. Marine mammals, as apex predators, are climatechange sensitive, and their spatial distribution and conservation requirements are critically significant for designing protection strategies. In this study, we focused on an ice-breeding marine mammal, the spotted seal (Phoca largha), which exhibits distinct morphological and genetic variations across its range. Our objectives were to quantify the ecological niches of three spotted seal populations, construct the species-level model and population-level models that represent different regions in the Bering population (BDPS), Okhotsk population (ODPS) and southern population (SDPS), and conduct a conservation gap analysis. Our findings unequivocally demonstrated a clear niche divergence among the three populations. We predicted habitat contraction for the BDPS and ODPS driven by climate change; in particular, the spotted seals inhabiting Liaodong Bay may face breeding habitat loss. However, most spotted seal habitats are not represented in existing marine protected areas. Drawing upon these outcomes, we propose appropriate conservation policies to effectively protect the habitat of the different geographical populations of spotted seals. Our research addresses the importance of incorporating local adaptation into species distribution modeling to inform conservation and management strategies.

6.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762246

RESUMO

Microorganisms living in polar regions rely on specialized mechanisms to adapt to extreme environments. The study of their stress adaptation mechanisms is a hot topic in international microbiology research. In this study, a bacterial strain (Arc9.136) isolated from Arctic marine sediments was selected to implement polyphasic taxonomic identification based on factors such as genetic characteristics, physiological and biochemical properties, and chemical composition. The results showed that strain Arc9.136 is classified to the genus Nocardioides, for which the name Nocardioides arcticus sp. nov. is proposed. The ozone hole over the Arctic leads to increased ultraviolet (UV-B) radiation, and low temperatures lead to increased dissolved content in seawater. These extreme environmental conditions result in oxidative stress, inducing a strong response in microorganisms. Based on the functional classification of significantly differentially expressed genes under 1 mM H2O2 stress, we suspect that Arc9.136 may respond to oxidative stress through the following strategies: (1) efficient utilization of various carbon sources to improve carbohydrate transport and metabolism; (2) altering ion transport and metabolism by decreasing the uptake of divalent iron (to avoid the Fenton reaction) and increasing the utilization of trivalent iron (to maintain intracellular iron homeostasis); (3) increasing the level of cell replication, DNA repair, and defense functions, repairing DNA damage caused by H2O2; (4) and changing the composition of lipids in the cell membrane and reducing the sensitivity of lipid peroxidation. This study provides insights into the stress resistance mechanisms of microorganisms in extreme environments and highlights the potential for developing low-temperature active microbial resources.


Assuntos
Peróxido de Hidrogênio , Nocardioides , Peróxido de Hidrogênio/farmacologia , Transcriptoma , Transporte Biológico , Ferro
7.
Sci Total Environ ; 905: 166974, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37699479

RESUMO

Although polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) have been recorded worldwide, information on their presence in the Eastern Indian Ocean (EIO), especially south of 10°S, remains limited. We investigated the distribution and depositional fluxes of PAHs and OCPs, and the major sources and ecological risks of PAHs in EIO surface sediments from the Central Indian Ocean (CIOB) and Wharton Basin (WB). The concentration of Σ18 PAHs and ∑10 OCPs had an average value (± SD) of 138.4 ± 52.34 and 0.8 ± 0.20 ng g-1, respectively. PAHs may mainly affected by traffic emission and biomass and wood combustion. Persistent organic pollutant accumulation rate (PAR) and depositional flux (DF) values showed that abundant PAHs might lost during top-down transport. The low trans- chordane (CHL)/cis-CHL ratio and PAR of OCPs may indicated few OCPs were inputted into the EIO recently. The results of binary isotope mixing modeling indicate the predominance of marine organic matter (MOM) in total organic carbon (TOC) of sediments. Fluoranthene (Flour) and pyrene (Py) might have potential biological effects in the EIO. The study provided background values for PAHs and OCPs in the Indian Ocean, and preliminarily revealed the fate of POPs in the open oceans.

8.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982830

RESUMO

Antarctic organisms are consistently suffering from multiple environmental pressures, especially the strong UV radiation caused by the loss of the ozone layer. The mosses and lichens dominate the vegetation of the Antarctic continent, which grow and propagate in these harsh environments. However, the molecular mechanisms and related regulatory networks of these Antarctic plants against UV-B radiation are largely unknown. Here, we used an integrated multi-omics approach to study the regulatory mechanism of long non-coding RNAs (lncRNAs) of an Antarctic moss (Pohlia nutans) in response to UV-B radiation. We identified a total of 5729 lncRNA sequences by transcriptome sequencing, including 1459 differentially expressed lncRNAs (DELs). Through functional annotation, we found that the target genes of DELs were significantly enriched in plant-pathogen interaction and the flavonoid synthesis pathway. In addition, a total of 451 metabolites were detected by metabonomic analysis, and 97 differentially change metabolites (DCMs) were found. Flavonoids account for 20% of the total significantly up-regulated metabolites. In addition, the comprehensive transcriptome and metabolome analyses revealed the co-expression pattern of DELs and DCMs of flavonoids. Our results provide insights into the regulatory network of lncRNA under UV-B radiation and the adaptation of Antarctic moss to the polar environments.


Assuntos
Briófitas , Bryopsida , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Raios Ultravioleta , Briófitas/genética , Briófitas/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Plantas/metabolismo , Flavonoides
9.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555211

RESUMO

An additive- and pollution-free method for the preparation of biogenic silver and silver chloride nanoparticles (Ag@AgCl NPs) was developed from the bacteria Shewanella sp. Arc9-LZ, which was isolated from the deep sea of the Arctic Ocean. The optimal synthesizing conditions were explored, including light, pH, Ag+ concentration and time. The nanoparticles were studied by means of ultraviolet-visible (UV-Vis) spectrophotometry, energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and inductively coupled plasma optical emission spectrometers (ICP-OES). The transmission electron microscope (TEM) showed that the nanoparticles were spherical and well dispersed, with particle sizes less than 20.00 nm. With Ag@AgCl nanoparticles, the kinetic rate constants for congo red (CR) and rhodamine B (RhB) dye degradation were 2.74 × 10-1 min-1 and 7.78 × 10-1 min-1, respectively. The maximum decolourization efficiencies of CR and RhB were 93.36% and 99.52%, respectively. Ag@AgCl nanoparticles also showed high antibacterial activities against the Gram-positive and Gram-negative bacteria. The Fourier transform infrared spectroscopy (FTIR) spectrum indicated that the O-H, N-H and -COO- groups in the supernatant of Arc9-LZ might participate in the reduction, stabilization and capping of nanoparticles. We mapped the schematic diagram on possible mechanisms for synthesizing Ag@AgCl NPs.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
10.
Mitochondrial DNA B Resour ; 7(11): 1925-1927, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353057

RESUMO

Cepola schlegelii (Bleeker 1854) belongs to the genus Cepola in the family Cepolidae and order Priacanthiformes. The complete mitochondrial genome of C. schlegelii was sequenced and analyzed by a high-throughput sequencing approach. The full length of the genome is 17,020 bp, including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and a non-coding control region (D-loop). Phylogenetic analysis based on complete mitochondrial genomes revealed that C. schlegelii was most closely related to Acanthocepola krusensternii. The complete mitochondrial sequence of C. schlegelii will enrich the mitochondrial genome database and provide useful resources for population genetics and evolution analyses.

11.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362295

RESUMO

12-oxo-phytodienoic acid (OPDA) is a biosynthetic precursor of jasmonic acid and triggers multiple biological processes from plant development to stress responses. However, the OPDA signaling and relevant regulatory networks were largely unknown in basal land plants. Using an integrated multi-omics technique, we investigated the global features in metabolites and transcriptional profiles of an Antarctic moss (Pohlia nutans) in response to OPDA treatment. We detected 676 metabolites based on the widely targeted metabolomics approach. A total of 82 significantly changed metabolites were observed, including fatty acids, flavonoids, phenolic acids, amino acids and derivatives, and alkaloids. In addition, the transcriptome sequencing was conducted to uncover the global transcriptional profiles. The representative differentially expressed genes were summarized into functions including Ca2+ signaling, abscisic acid signaling, jasmonate signaling, lipid and fatty acid biosynthesis, transcription factors, antioxidant enzymes, and detoxification proteins. The integrated multi-omics analysis revealed that the pathways of jasmonate and ABA signaling, lipid and fatty acid biosynthesis, and flavonoid biosynthesis might dominate the molecular responses to OPDA. Taken together, these observations provide insights into the molecular evolution of jasmonate signaling and the adaptation mechanisms of Antarctic moss to terrestrial habitats.


Assuntos
Briófitas , Bryopsida , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Bryopsida/genética , Briófitas/genética , Regulação da Expressão Gênica de Plantas
12.
BMC Genomics ; 23(1): 713, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261793

RESUMO

BACKGROUND: Bacteria are an essential component of the earth`s biota and affect circulation of matters through their metabolic activity. They also play an important role in the carbon and nitrogen cycle in the deep-sea environment. In this paper, two strains from deep-sea sediments were investigated in order to understand nitrogen cycling involved in the deep-sea environment. RESULTS: In this paper, the basic genomic information of two strains was obtained by whole genome sequencing. The Cobetia amphilecti N-80 and Halomonas profundus 13 genome sizes are 4,160,095 bp with a GC content of 62.5% and 5,251,450 bp with a GC content of 54.84%. Through a comparison of functional analyses, we predicted the possible C and N metabolic pathways of the two strains and determined that Halomonas profundus 13 could use more carbon sources than Cobetia amphilecti N-80. The main genes associated with N metabolism in Halomonas profundus 13 are narG, narY, narI, nirS, norB, norC, nosZ, and nirD. On the contrast, nirD, using NH4+ for energy, plays a main role in Cobetia amphilecti N-80. Both of them have the same genes for fixing inorganic carbon: icd, ppc, fdhA, accC, accB, accD, and accA. CONCLUSION: In this study, the whole genomes of two strains were sequenced to clarify the basic characteristics of their genomes, laying the foundation for further studying nitrogen-metabolizing bacteria. Halomonas profundus 13 can utilize more carbon sources than Cobetia amphilecti N-80, as indicated by API as well as COG and KEGG prediction results. Finally, through the analysis of the nitrification and denitrification abilities as well as the inorganic carbon fixation ability of the two strains, the related genes were identified, and the possible metabolic pathways were predicted. Together, these results provide molecular markers and theoretical support for the mechanisms of inorganic carbon fixation by deep-sea microorganisms.


Assuntos
Bactérias , Nitrogênio , Nitrogênio/metabolismo , Regiões Antárticas , Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , Sequenciamento Completo do Genoma
13.
Front Plant Sci ; 13: 1006991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176693

RESUMO

Antarctica is the coldest, driest, and most windy continent on earth. The major terrestrial vegetation consists of cryptogams (mosses and lichens) and two vascular plant species. However, the molecular mechanism of cold tolerance and relevant regulatory networks were largely unknown in these Antarctic plants. Here, we investigated the global alterations in metabolites and regulatory pathways of an Antarctic moss (Pohlia nutans) under cold stress using an integrated multi-omics approach. We found that proline content and several antioxidant enzyme activities were significantly increased in P. nutans under cold stress, but the contents of chlorophyll and total flavonoids were markedly decreased. A total of 559 metabolites were detected using ultra high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). We observed 39 and 71 differentially changed metabolites (DCMs) after 24 h and 60 h cold stress, indicating that several major pathways were differentially activated for producing fatty acids, alkaloids, flavonoids, terpenoids, and phenolic acids. In addition, the quantitative transcriptome sequencing was conducted to uncover the global transcriptional profiles of P. nutans under cold stress. The representative differentially expressed genes (DEGs) were identified and summarized to the function including Ca2+ signaling, ABA signaling, jasmonate signaling, fatty acids biosynthesis, flavonoid biosynthesis, and other biological processes. The integrated dataset analyses of metabolome and transcriptome revealed that jasmonate signaling, auxin signaling, very-long-chain fatty acids and flavonoid biosynthesis pathways might contribute to P. nutans acclimating to cold stress. Overall, these observations provide insight into Antarctic moss adaptations to polar habitats and the impact of global climate change on Antarctic plants.

14.
Front Plant Sci ; 13: 850062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968129

RESUMO

Flavonoids, the largest group of polyphenolic secondary metabolites present in all land plants, play essential roles in many biological processes and defense against abiotic stresses. In the flavonoid biosynthesis pathway, flavones synthase I (FNSI), flavanone 3-hydroxylase (F3H), flavonol synthase (FLS), and anthocyanidin synthase (ANS) all belong to 2-oxoglutarate/Fe(II)-dependent dioxygenases (2-ODDs) family, which catalyzes the critical oxidative reactions to form different flavonoid subgroups. Here, a novel 2-ODD gene was cloned from Antarctic moss Pohlia nutans (Pn2-ODD1) and its functions were investigated both in two model plants, Physcomitrella patens and Arabidopsis thaliana. Heterologous expression of Pn2-ODD1 increased the accumulation of anthocyanins and flavonol in Arabidopsis. Meanwhile, the transgenic P. patens and Arabidopsis with expressing Pn2-ODD1 exhibited enhanced tolerance to salinity and drought stresses, with larger gametophyte sizes, better seed germination, and longer root growth. Heterologous expression of Pn2-ODD1 in Arabidopsis also conferred the tolerance to UV-B radiation and oxidative stress by increasing antioxidant capacity. Therefore, we showed that Pn2-ODD1 participated in the accumulation of anthocyanins and flavonol in transgenic plants, and regulated the tolerance to abiotic stresses in plants, contributing to the adaptation of P. nutans to the polar environment.

15.
Front Plant Sci ; 13: 924162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035699

RESUMO

Most regions of the Antarctic continent are experiencing increased dryness due to global climate change. Mosses and lichens are the dominant vegetation of the ice-free areas of Antarctica. However, the molecular mechanisms of these Antarctic plants adapting to drought stress are less documented. Here, transcriptome and metabolome analyses were employed to reveal the responses of an Antarctic moss (Pohlia nutans subsp. LIU) to drought stress. We found that drought stress made the gametophytes turn yellow and curled, and enhanced the contents of malondialdehyde and proline, and the activities of antioxidant enzymes. Totally, 2,451 differentially expressed genes (DEGs) were uncovered under drought treatment. The representative DEGs are mainly involved in ROS-scavenging and detoxification, flavonoid metabolism pathway, plant hormone signaling pathway, lipids metabolism pathway, transcription factors and signal-related genes. Meanwhile, a total of 354 differentially changed metabolites (DCMs) were detected in the metabolome analysis. Flavonoids and lipids were the most abundant metabolites and they accounted for 41.53% of the significantly changed metabolites. In addition, integrated transcriptome and metabolome analyses revealed co-expression patterns of flavonoid and long-chain fatty acid biosynthesis genes and their metabolites. Finally, qPCR analysis demonstrated that the expression levels of stress-related genes were significantly increased. These genes included those involved in ABA signaling pathway (NCED3, PP2C, PYL, and SnAK2), jasmonate signaling pathway (AOC, AOS, JAZ, and OPR), flavonoid pathway (CHS, F3',5'H, F3H, FLS, FNS, and UFGT), antioxidant and detoxifying functions (POD, GSH-Px, Prx and DTX), and transcription factors (ERF and DREB). In summary, we speculated that P. nutans were highly dependent on ABA and jasmonate signaling pathways, ROS scavenging, flavonoids and fatty acid metabolism in response to drought stress. These findings present an important knowledge for assessing the impact of coastal climate change on Antarctic basal plants.

16.
Biosci Rep ; 42(7)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35788826

RESUMO

Gadus macrocephalus (Pacific cod) is an economically important species on the northern coast of the Pacific. Although numerous studies on G. macrocephalus exist, there are few reports on its genomic data. Here, we used whole-genome sequencing data to elucidate the genomic characteristics and phylogenetic relationship of G. macrocephalus. From the 19-mer frequency distribution, the genome size was estimated to be 658.22 Mb. The heterozygosity, repetitive sequence content and GC content were approximately 0.62%, 27.50% and 44.73%, respectively. The draft genome sequences were initially assembled, yielding a total of 500,760 scaffolds (N50 = 3565 bp). A total of 789,860 microsatellite motifs were identified from the genomic data, and dinucleotide repeat was the most dominant simple sequence repeat motif. As a byproduct of whole-genome sequencing, the mitochondrial genome was assembled to investigate the evolutionary relationships between G. macrocephalus and its relatives. On the basis of 13 protein-coding gene sequences of the mitochondrial genome of Gadidae species, the maximum likelihood phylogenetic tree showed that complicated relationships and divergence times among Gadidae species. Demographic history analysis revealed changes in the G. macrocephalus population during the Pleistocene by using the pairwise sequentially Markovian coalescent model. These findings supplement the genomic data of G. macrocephalus, and make a valuable contribution to the whole-genome studies on G. macrocephalus.


Assuntos
Gadiformes , Animais , Gadiformes/genética , Genômica , Repetições de Microssatélites/genética , Filogenia
17.
Mitochondrial DNA B Resour ; 7(7): 1308-1309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35866142

RESUMO

The mitochondrial genome of Upeneus japonicus was successfully assembled by high-throughput sequencing data in this study. This is the first report on the complete mitochondrial genome of U. japonicus, with a total length of 16,535 bp, including 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and a control region (D-loop). The overall base composition is 26.05% A, 26.10% T, 29.14% C, and 18.71% G. Phylogenetic analysis showed that U. japonicus was grouped with its sister species U. tragula. The mitochondrial complete genome study of U. japonicus would lay the foundation for further studies in population genetics and evolutionary analysis.

18.
Front Plant Sci ; 13: 920138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783932

RESUMO

The Antarctic continent has extreme natural environment and fragile ecosystem. Mosses are one of the dominant floras in the Antarctic continent. However, their genomic features and adaptation processes to extreme environments remain poorly understood. Here, we assembled the high-quality genome sequence of the Antarctic moss (Pohlia nutans) with 698.20 Mb and 22 chromosomes. We found that the high proportion of repeat sequences and a recent whole-genome duplication (WGD) contribute to the large size genome of P. nutans when compared to other bryophytes. The genome of P. nutans harbors the signatures of massive segmental gene duplications and large expansions of gene families, likely facilitating neofunctionalization. Genomic characteristics that may support the Antarctic lifestyle of this moss comprise expanded gene families involved in phenylpropanoid biosynthesis, unsaturated fatty acid biosynthesis, and plant hormone signal transduction. Additional contributions include the significant expansion and upregulation of several genes encoding DNA photolyase, antioxidant enzymes, flavonoid biosynthesis enzymes, possibly reflecting diverse adaptive strategies. Notably, integrated multi-omic analyses elucidate flavonoid biosynthesis may function as the reactive oxygen species detoxification under UV-B radiation. Our studies provide insight into the unique features of the Antarctic moss genome and their molecular responses to extreme terrestrial environments.

19.
Ann Palliat Med ; 11(4): 1462-1472, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35523754

RESUMO

BACKGROUND: Whether diabetes remission still happened among non-obese type 2 diabetes (T2DM) patients with a body mass index (BMI) <25 kg/m2 following lifestyle-medicine interventions was quite necessary to be reported because many diabetes happened with normal or low BMI in China. METHODS: The criteria for subject inclusion: <20 years after T2DM diagnosis, ≥6 months treatment with oral anti-diabetic drugs, without serious complications, and no history of insulin use. They were divided into two groups: the obesity group (BMI ≥25 kg/m2) and the lean group (BMI <25 kg/m2). All subjects received the following lifestyle-medicine interventions: stopping oral anti-diabetic therapy, initiating a low-carbohydrate (contributing by 35-40% to calorie intake) diet for the first month (gradual transition to a normal diet for the next 5 months), participating in resistance and aerobic exercise, and receiving strengthen management. Diabetes remission was defined as glycosylated hemoglobin (A1C) level <6.5% (<48 mmol/mol) after 6 months of not taking any anti-diabetic medications during the lifestyle-medicine intervention. Finally, 125 individuals completed the lifestyle-medicine intervention in the prospective study. The efficacy and safety of lifestyle-medicine intervention were assessed and compared between lean and obese Chinese subjects with T2DM. RESULTS: We found that 64.52% of the T2DM subjects in the obese group and 60.64% of T2DM subjects in the lean group achieved diabetes remission [i.e., an A1C level <6.5% (48 mmol/mol)] without any anti-diabetic medications after the 6-month lifestyle-medicine intervention. Our multiple linear regression analysis showed that decreases in the fasting plasma glucose (FPG) level had the most powerful effect on decreases in the A1C level after the intervention (R2=0.3072). CONCLUSIONS: Lifestyle-medicine interventions may have increased effectiveness in controlling mild T2DM as compared with the oral antidiabetic-based treatment; unexpectedly, there seems no further improvement in lean relative to obese patients. Three in five subjects could achieve diabetes remission though the lifestyle-medicine intervention regardless of whether their BMI was below or above 25 kg/m2.


Assuntos
Diabetes Mellitus Tipo 2 , Estilo de Vida , Povo Asiático , Glicemia , China , Diabetes Mellitus Tipo 2/terapia , Hemoglobinas Glicadas/análise , Humanos , Obesidade , Estudos Prospectivos , Indução de Remissão , Resultado do Tratamento
20.
ACS Omega ; 7(18): 15359-15368, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35571789

RESUMO

To improve the rate of formation of carbon dioxide hydrates, tetra-n-butylammonium bromide (TBAB) was compounded with different concentrations of sodium dodecyl sulfate (SDS) and nanographite, and the effects of these mixtures on carbon dioxide hydrate formation were studied. The addition of TBAB alone, as well as mixtures of TBAB and SDS or nanographite, shortened the induced nucleation time, and the induction times of the TBAB-2.5 g/L nanographite and TBAB-0.24 g/L SDS systems were the shortest and longest, respectively. Further, on mixing TBAB and SDS, the induced nucleation time first increased and then decreased with the increase in the SDS concentration. When TBAB and nanographite were mixed together, the induced nucleation time first decreased, then increased, and again decreased with the increase in the nanographite concentration. In addition, the hydrate formation rate and conversion were highest for the TBAB-0.48 g/L SDS system and lowest for the TBAB-0.06 g/L SDS system; in the first 35 min, from the end of gas charging, the TBAB-10 g/L nanographite and TBAB-5 g/L nanographite systems yielded the highest and lowest hydrate formation rates and conversions, respectively. For the composite systems, obvious effects were observed in the initial stages of reaction, but the effects varied over the course of the reaction. Overall, the use of different accelerators resulted in little differences in the total production, conversion, and formation rate of carbon dioxide hydrates over the course of the reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...