Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38706118

RESUMO

Bombyx mori L. (Lepidoptera: Bombycidae) nucleopolyhedrovirus (BmNPV) is a serious pathogen causing huge economic losses to sericulture. There is growing evidence that the gut microbiota of silkworms plays a critical role in shaping host responses and interactions with viral infection. However, little is known about the differences in the composition and diversity of intestinal microflora, especially with respect to silkworm strain differences and BmNPV infection-induced changes. Here, we aim to explore the differences between BmNPV-resistant strain A35 and susceptible strain P50 silkworm and the impact of BmNPV infection on intestinal microflora in different strains. The 16S rDNA sequencing analysis revealed that the fecal microbial populations were distinct between A35 and P50 and were significantly changed post BmNPV infection in both strains. Further analysis showed that the BmNPV-resistant strain silkworm possessed higher bacterial diversity than the susceptible strain, and BmNPV infection reduced the diversity of intestinal flora assessed by feces in both silkworm strains. In response to BmNPV infection, the abundance of Muribaculaceae increased in P50 and decreased in A35, while the abundance of Enterobacteriaceae decreased in P50 and increased in A35. These results indicated that BmNPV infection had various effects on the abundance of fecal microflora in different silkworm strains. Our findings not only broadened the understanding of host-pathogen interactions but also provided theoretical help for the breeding of resistant strains and healthy rearing of silkworms based on symbiotic bacteria.

2.
Insect Biochem Mol Biol ; 169: 104125, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38616030

RESUMO

Voltage-dependent anion channel 2 (VDAC2) is an important channel protein that plays a crucial role in the host response to viral infection. The receptor for activated C kinase 1 (RACK1) is also a key host factor involved in viral replication. Our previous research revealed that Bombyx mori VDAC2 (BmVDAC2) and B. mori RACK1 (BmRACK1) may interact with Bombyx mori nucleopolyhedrovirus (BmNPV), though the specific molecular mechanism remains unclear. In this study, the interaction between BmVDAC2 and BmRACK1 in the mitochondria was determined by various methods. We found that BmNPV p35 interacts directly with BmVDAC2 rather than BmRACK1. BmNPV infection significantly reduced the expression of BmVDAC2, and activated the mitochondrial apoptosis pathway. Overexpression of BmVDAC2 in BmN cells inhibited BmNPV-induced cytochrome c (cyto c) release, decrease in mitochondrial membrane potential as well as apoptosis. Additionally, the inhibition of cyto c release by BmVDAC2 requires the involvement of BmRACK1 and protein kinase C. Interestingly, overexpression of p35 inhibited cyto c release during mitochondrial apoptosis in a RACK1 and VDAC2-dependent manner. Even the mutant p35, which loses Caspase inhibitory activity, could still bind to VDAC2 and inhibit cyto c release. In summary, our results indicated that BmNPV p35 interacts with the VDAC2-RACK1 complex to regulate apoptosis by inhibiting cyto c release. These findings confirm the interaction between BmVDAC2 and BmRACK1, the interaction between p35 and the VDAC2-RACK1 complex, and a novel target that BmNPV p35 regulates apoptosis in Bombyx mori via interaction with the BmVDAC2-BmRACK1 complex. The result provide an initial exploration of the function of this interaction in the BmNPV-induced mitochondrial apoptosis pathway.

3.
Insect Mol Biol ; 33(3): 259-269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38335442

RESUMO

The RNA interference pathway mediated by microRNAs (miRNAs) is one of the methods to defend against viruses in insects. Recent studies showed that miRNAs participate in viral infection by binding to target genes to regulate their expression. Here, we found that the Bombyx mori miRNA, miR-6498-5p was down-regulated, whereas its predicted target gene pyridoxal phosphate phosphatase PHOSPHO2 (BmPLPP2) was up-regulated upon Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Both in vivo and in vitro experiments showed that miR-6498-5p targets BmPLPP2 and suppresses its expression. Furthermore, we found miR-6498-5p inhibits BmNPV genomic DNA (gDNA) replication, whereas BmPLPP2 promotes BmNPV gDNA replication. As a pyridoxal phosphate (PLP) phosphatase (PLPP), the overexpression of BmPLPP2 results in a reduction of PLP content, whereas the knockdown of BmPLPP2 leads to an increase in PLP content. In addition, exogenous PLP suppresses the replication of BmNPV gDNA; in contrast, the PLP inhibitor 4-deoxypyridoxine facilitates BmNPV gDNA replication. Taken together, we concluded that miR-6498-5p has a potential anti-BmNPV role by down-regulating BmPLPP2 to modulate PLP content, but BmNPV induces miR-6498-5p down-regulation to promote its proliferation. Our findings provide valuable insights into the role of host miRNA in B. mori-BmNPV interaction. Furthermore, the identification of the antiviral molecule PLP offers a novel perspective on strategies for preventing and managing viral infection in sericulture.


Assuntos
Bombyx , Regulação para Baixo , MicroRNAs , Nucleopoliedrovírus , Fosfato de Piridoxal , Animais , Bombyx/virologia , Bombyx/genética , Bombyx/metabolismo , Nucleopoliedrovírus/fisiologia , MicroRNAs/metabolismo , MicroRNAs/genética , Fosfato de Piridoxal/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Larva/metabolismo , Larva/virologia , Larva/genética , Larva/crescimento & desenvolvimento , Replicação Viral
4.
Insect Sci ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38258370

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that play pivotal roles in the host response to invading pathogens. Among these pathogens, Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the main causes of substantial economic losses in sericulture, and there are relatively few studies on the specific functions of miRNAs in the B. mori-BmNPV interaction. Therefore, we conducted transcriptome sequencing to identify differentially expressed (DE) messenger RNAs (mRNAs) and miRNAs in the midgut of 2 B. mori strains (BmNPV-susceptible strain P50 and BmNPV-resistant strain A35) after BmNPV infection. Through correlation analysis of the miRNA and mRNA data, we identified a comprehensive set of 21 miRNAs and 37 predicted target mRNAs. Notably, miR-3351, which has high expression in A35, exhibited remarkable efficacy in suppressing BmNPV proliferation. Additionally, we confirmed that miR-3351 binds to the 3' untranslated region (3' UTR) of B. mori glutathione S-transferase epsilon 6 (BmGSTe6), resulting in its downregulation. Conversely, BmGSTe6 displayed an opposite expression pattern to miR-3351, effectively promoting BmNPV proliferation. Notably, BmGSTe6 levels were positively correlated with glutathione S-transferase activity, consequently influencing intracellular glutathione content in the infected samples. Furthermore, our investigation revealed the protective role of glutathione against BmNPV infection in BmN cells. In summary, miR-3351 modulates glutathione content by downregulating BmGSTe6 to inhibit BmNPV proliferation in B. mori. Our findings enriched the research on the role of B. mori miRNAs in the defense against BmNPV infection, and suggests that the antiviral molecule, glutathione, offers a novel perspective on preventing viral infection in sericulture.

5.
Int J Biol Macromol ; 253(Pt 1): 126414, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37634785

RESUMO

Ferritin is an iron-binding protein composed of light-chain and heavy-chain homologs with a molecular weight of about 500 kDa. Free iron ions significantly affect reactive oxygen species (ROS) accumulation. Previous research has shown that Bombyx mori nucleopolyhedrosis virus (BmNPV) can increase ROS accumulation, activate autophagy, induce apoptosis, and upregulate the expression of B. mori ferritin heavy-chain homolog (BmFerHCH). However, the mechanism of mutual regulation between BmFerHCH and ROS-mediated autophagy and apoptosis induced by BmNPV remains unclear. In this study, we found that BmNPV induced the time-dependent accumulation of ROS in BmN cells, thereby promoting BmFerHCH expression. Interestingly, in BmFerHCH-overexpressed cells, BmNPV replication was inhibited in the first 18 h after infection but stimulated after 24 h. Further research on H2O2 or antioxidant-treated cells indicated that ROS-induced autophagy slightly increased in the early infection stage and increased BmNPV replication, while in the late stage, a large accumulation of ROS induced apoptosis and inhibited BmNPV replication. In this process, BmFerHCH inhibits BmNPV-induced ROS accumulation by chelating Fe2+. Taken together, BmFerHCH regulates ROS-mediated autophagy and apoptosis to achieve its various effects on BmNPV replication. These findings will help elucidate BmNPV-induced autophagy and apoptosis mediated by ROS and BmFerHCH, as well as the mutually fighting relationship between viruses and hosts.


Assuntos
Bombyx , Animais , Bombyx/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Proteínas de Insetos/metabolismo
6.
Int J Biol Macromol ; 235: 123834, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36842745

RESUMO

c-Jun N-terminal kinase (JNK) phosphorylation is widely observed during virus infection, modulating various aspects of the virus-host interaction. In our previous research, we have proved that B. mori ferritin heavy-chain homolog (BmFerHCH), an inhibitor of reactive oxygen species (ROS), facilitates B. mori nucleopolyhedrovirus (BmNPV) proliferation. However, one question remains: Which downstream signaling pathways does BmFerHCH regulate by inhibiting ROS? Here, we first determined that silencing BmFerHCH inhibits BmNPV proliferation, and this inhibition depends on ROS. Then, we substantiated that BmNPV infection activates the JNK signaling pathway. Interestingly, the JNK phosphorylation during BmNPV infection is activated by ROS. Further, we found that the enhanced nuclear translocation of phospho-JNK induced by BmNPV infection was dramatically reduced by pretreatment with the antioxidant N-acetylcysteine (NAC), whereas there was more detectable phospho-JNK in the cytoplasm. Next, we investigated how changes in BmFerHCH expression affect JNK phosphorylation. BmFerHCH overexpression suppressed the phosphorylation of JNK and nuclear translocation of phospho-JNK during BmNPV infection, whereas BmFerHCH knockdown facilitated phosphorylation of JNK and nuclear translocation of phospho-JNK. By measuring the viral load, we found the inhibitory effect of BmFerHCH knockdown on BmNPV infection depends on phosphorylated JNK. In addition, the JNK signaling pathway was involved in BmNPV-triggered apoptosis. Hence, we hypothesize that ROS-mediated JNK phosphorylation is involved in the regulation of BmFerHCH on BmNPV proliferation. These results elucidate the molecular mechanisms and signaling pathways of BmFerHCH-mediated response to BmNPV infection.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Fosforilação , Nucleopoliedrovírus/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Apoferritinas/metabolismo , Sistema de Sinalização das MAP Quinases , Proliferação de Células , Bombyx/metabolismo , Proteínas de Insetos/metabolismo
7.
Dev Comp Immunol ; 140: 104625, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36572165

RESUMO

The reprogramming of host physiology has been considered an essential process for baculovirus propagation. Trehalose, the main sugar in insect blood, plays a crucial role as an instant energy source. Although the trehalose level is modulated following infection with Bombyx mori nucleopolyhedrovirus (BmNPV), the mechanism of trehalose metabolism in response to BmNPV infection is still unclear. In this study, we demonstrated that the trehalose level tended to be lower in BmNPV-infected hemolymph and higher in the midgut. The omics analysis revealed that two trehalose transporters, BmTret1-1 and BmTret1-2, and trehalase, BmTRE1 and BmTRE2, were differentially expressed in the midgut after BmNPV infection. BmTret1-1 and BmTret1-2 had the ability to transport trehalose into the cell and promoted cellular absorption of trehalose. Furthermore, the functions of BmTret1-1, BmTret1-2, BmTRE1 and BmTRE2 in BmNPV infection were analyzed. These genes were upregulated in the midgut after BmNPV infection. Virus amplification analysis revealed that these genes could promote BmNPV proliferation in BmN cells. In addition, these genes could promote the expression of BmPI3K, BmPDK1 and BmAkt and inhibit the expression of BmFoxO in the phosphoinositide 3-kinase (PI3K)-Akt signalling pathway. Similarly, the increased trehalose level in BmN cells could promote the expression of BmPI3K, BmPDK1 and BmAkt and inhibit the expression of BmFoxO. Taken together, BmNPV infection promote the expression of trehalose hydrolysis and transport-related genes. These changes affect the PI3K-Akt signalling pathway to facilitate BmNPV proliferation. These findings help clarify the relationship between trehalose metabolism and BmNPV infection.


Assuntos
Bombyx , Fosfatidilinositol 3-Quinases , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Hidrólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trealose/metabolismo , Proliferação de Células , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
8.
Int J Biol Macromol ; 217: 842-852, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35905762

RESUMO

Ferritin heavy-chain homolog (FerHCH), an iron-binding protein, plays an important role in the host defense against oxidative stress and pathogen infections. In our previous research, Bombyx mori native ferritin had an interaction with B. mori nucleopolyhedrovirus (BmNPV). However, the underlying molecular mechanism of single ferritin homolog responses to BmNPV infection remains unclear. In this study, we found that BmNPV titer and B. mori FerHCH (BmFerHCH) expression were positively correlated with the ferric iron concentration. We performed RNA interference (RNAi) and overexpression experiments to investigate the effects of BmFerHCH on BmNPV proliferation. BmFerHCH knockdown suppressed BmNPV proliferation in vivo and in vitro, whereas BmFerHCH overexpression facilitated BmNPV proliferation. In addition, the oxidative stress level was increased significantly in BmN cells after budded virus infection, while BmFerHCH could neutralize the increased ROS production induced by BmNPV. Of note, we found that ROS was involved in BmNPV-induced apoptosis. Through inhibiting ROS, apoptosis was suppressed by BmFerHCH, whereas BmFerHCH knockdown facilitated apoptosis. Therefore, we hypothesize that BmFerHCH-mediated inhibition of virus-induced apoptosis depends on suppressing ROS accumulation and, thereby, facilitates virus replication. These results suggest that BmFerHCH plays an important role in facilitating BmNPV proliferation and modulating BmFerHCH is potential strategy for studying host-pathogen interactions.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Apoferritinas/metabolismo , Apoptose , Bombyx/genética , Proliferação de Células , Ferritinas/genética , Ferritinas/metabolismo , Nucleopoliedrovírus/genética , Espécies Reativas de Oxigênio/metabolismo
9.
Insects ; 12(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34442307

RESUMO

ß-1,3-glucan recognition proteins (ßGRPs) as pattern recognition receptors (PRRs) play an important role in recognizing various pathogens and trigger complicated signaling pathways in insects. In this study, we identified a Bombyx mori ß-1,3-glucan recognition protein gene named BmßGRP4, which showed differential expression, from a previous transcriptome database. The full-length cDNA sequence was 1244 bp, containing an open reading frame (ORF) of 1128 bp encoding 375 amino acids. BmßGRP4 was strongly expressed in the larval stages and highly expressed in the midgut of B. mori larvae in particular. After BmNPV infection, the expression of BmßGRP4 was reduced significantly in the midgut. Furthermore, a significant increase in the copy number of BmNPV was observed after the knockdown of BmßGRP4 in 5th instar larvae, while the overexpression of BmßGRP4 suppressed the proliferation of BmNPV in BmN cells. Subsequently, the expression analysis of several apoptosis-related genes and observation of the apoptosis morphology demonstrated that overexpression of BmßGRP4 facilitated apoptosis induced by BmNPV in BmN cells. Moreover, BmßGRP4 positively regulated the phosphatase and tensin homolog gene (BmPTEN), while expression of the inhibitor of apoptosis gene (BmIAP) was negatively regulated by BmßGRP4. Hence, we hypothesize that BmNPV infection might suppress BmPTEN and facilitate BmIAP to inhibit cell apoptosis by downregulating the expression of BmßGRP4 to escape host antiviral defense. Taken together, these results show that BmßGRP4 may play a role in B. mori response to BmNPV infection and lay a foundation for studying its functions.

10.
Dev Comp Immunol ; 119: 104035, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33535067

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is a serious pathogenic microorganism that causes tremendous loss to sericulture. Previous studies have found that some proteins of serine protease family in the digestive juice of B. mori larvae have anti-BmNPV activity. In our previous publication about proteome analysis of the digestive juice of B. mori larvae, the digestive enzyme trypsin, alkaline A (BmTA) was filtered as a differentially expressed protein possibly involved in BmNPV resistance. Here, the biological characteristics and anti-BmNPV functions of BmTA were comprehensively analysed. The cDNA sequence of BmTA had an ORF of 768 nucleotides encoding 255 amino acid residues. Domain architecture analysis showed that BmTA contained a signal peptide and a typical Tryp_SPc domain. Quantitative real-time PCR analysis showed that BmTA was highly expressed in the larval stages and specifically expressed in the midgut of B. mori larvae. The expression level of BmTA in BmNPV resistant strain A35 was higher than that in susceptible strain P50. After BmNPV infection, the expression of BmTA increased in both strains from 24 to 72 h. Virus amplification analysis showed that the relative levels of VP39 in B. mori larvae and BmN cells infected with the appropriate concentration of recombinant-BmTA-treated BmNPV were significantly lower than in the control groups. Moreover, overexpression of BmTA in BmN cells significantly inhibited the amplification of BmNPV. Taken together, the results of this study indicated that BmTA possessed anti-BmNPV activity in B. mori, which broadens the horizon for virus-resistant breeding of silkworms.


Assuntos
Bombyx/imunologia , Imunidade Inata/imunologia , Proteínas de Insetos/imunologia , Nucleopoliedrovírus/imunologia , Tripsina/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Bombyx/genética , Bombyx/virologia , Linhagem Celular , Sistema Digestório/imunologia , Sistema Digestório/metabolismo , Sistema Digestório/virologia , Expressão Gênica/imunologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Larva/imunologia , Larva/virologia , Nucleopoliedrovírus/fisiologia , Filogenia , Proteólise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tripsina/classificação , Tripsina/genética
11.
Insects ; 11(2)2020 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32079114

RESUMO

The oriental fruit fly (Bactrocera dorsalis) is a pest that causes large economic losses in the fruit and vegetable industry, so its control is a major challenge. Nuclear receptors (NRs) are a superfamily of ligand-dependent transcription factors that directly combine with DNA to regulate the expression of downstream target genes. NRs are closely associated with multiple physiological processes such as metabolism, reproduction, and development. Through sequence searches and analysis, we identified 21 B. dorsalis NR genes, all of which contained at least one of the two characteristic binding domains. On the basis of the conserved sequences and phylogenetic relationships, we divided the 21 NR genes into seven subfamilies. All members of the NR0 subfamily and BdHR83, which belonged to the NR2E group, lacked ligand-binding domains. The BdDSF and BdHR51, which also belonged to the NR2Egroup, and BdE78 (which belonged to the NR1E group) all lacked DNA-binding domains. The BdDSF and BdHR83 sequences were incomplete, and were not successfully amplified. Development- and tissue-specific expression profiling demonstrated that the transcript levels of the 19 NR genes varied considerably among eggs, larva, pupae, and adults, as well as among larval and adult male and female tissues. Our results will contribute to a better understanding of NR evolution and expand our knowledge of B. dorsalis physiology.

12.
Pest Manag Sci ; 76(6): 2127-2143, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31951094

RESUMO

BACKGROUND: The oriental fruit fly, Bactrocera dorsalis (Hendel), is an important agricultural pest and has developed resistance to many insecticides. To investigate vital genes participating in metamorphosis for development of additional control strategies, a comprehensive transcriptome analysis covering ten developmental stages of B. dorsalis was performed. RESULTS: There were 2132, 952, 1062, 2301 and 1333 differentially expressed genes identified during hatching, 1st-instar larval molting, 2nd-instar larval molting, pupariation and emergence, respectively. Further expression analyses indicated that genes in hormone- (20-hydroxyecdysone and juvenile hormone) and cuticle- (chitin and cuticle protein) related pathways were essential for metamorphosis in B. dorsalis. Among chitinase (Cht) genes, BdCht-5, -8 and -10 were differentially expressed during larval-larval, larval-pupal and pupal-adult moltings. However, BdCht7 was differentially expressed during egg-larval and larval-larval moltings. Knockdown of BdCht7 at the 1st-instar larval stage disrupted normal development of larvae and was lethal to B. dorsalis. Among cuticle protein (CP) genes, 15 genes (BdCPLCG-1, BdCPLCP-2, BdCPAP1-B2, BdRR1-21, BdRR1-31, BdRR2-15, BdRR2-26, BdRR2-30, BdRR2-32, BdTweedle-9, BdTweedle-24, BdRR2-10, BdCPAP3-C1, BdRR1-34 and BdRR1-41) were differentially expressed during four of five types of moltings. Among hormone-relative genes, BdJHBP-4, -9 and -13 were differentially expressed during all five types of moltings, whereas BdJHBP-5, -12 and BdHR4 were differentially expressed during four of five types of moltings. CONCLUSION: This study reveals critical genes involved in development and metamorphosis of B. dorsaslis, and BdCht7 is dispensable for larval survival. It also provides comprehensive transcriptome information for finding more molecular targets to control this pest. © 2020 Society of Chemical Industry.


Assuntos
Tephritidae , Animais , Perfilação da Expressão Gênica , Proteínas de Insetos , Larva , Pupa , Transcriptoma
13.
Artigo em Inglês | MEDLINE | ID: mdl-30965232

RESUMO

Temperature is an important factor influencing insect distribution. In the tropical and subtropical regions, insects always suffer the extreme temperature. Therefore, appropriate molecular response to temperature change is crucial for their survival. To understand how Diaphorina citri responds to high temperature at the molecular level, we conducted a comparative analysis of the transcriptomes of D. citri under room temperature and 40 °C heat shock treatment. The RNA sequencing analysis identified a total of 451 differentially expressed genes upon heat stress, including 167 down-regulated genes and 284 up-regulated genes. Thermal stress mainly significantly induced the transcription of molecular chaperone, protein biosynthesis and oxidation resistance, including members of the heat shock protein families, ATPases, and detoxifying enzymes. This study provides a preliminary insight into the transcriptional response of D. citri to heat stress and provides a foundation for the future functional validation of genes involved in thermotolerance in this important insect pest in tropical and subtropical regions.


Assuntos
Resposta ao Choque Térmico , Hemípteros/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Hemípteros/fisiologia , Proteínas de Insetos/genética , Temperatura
14.
J Econ Entomol ; 111(6): 2861-2868, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30107431

RESUMO

The oriental fruit fly, Bactrocera dorsalis (Hendel), is one of the most destructive agricultural pests and hosts diverse intestinal bacterial communities. We used 16S rRNA gene sequencing to investigate the microbial communities associated with the intestines of females and males from two B. dorsalis populations collected from Hainan and Guizhou Provinces of China. A total of 260,615 high-quality 16S rRNA gene reads with an average length of 253 bp were obtained. Highly diverse bacterial communities were observed across individuals, with communities containing between 691 and 1,262 bacterial operational taxonomic units. In addition, 37 bacterial phyla, 65 classes, 130 orders, 198 families, 201 genera, and 70 annotated species were identified, wherein the Proteobacteria were the most dominant phylum among all of the libraries, followed by the Firmicutes and Bacteroidetes. Bacterial community composition varied by host sex and geographic location of the populations. Female gut communities comprised fewer bacterial families than males, and females had lower relative abundances of 33 of the 35 most abundant families. In addition, female gut communities harbored greater abundances of Enterobacteriaceae than males. The Hainan population gut communities contained fewer bacterial families than those of the Guizhou populations. However, 5 of the 35 most abundant families were more abundant in communities from the Hainan population than those of the Guizhou population. The results of this study help us better understand the importance of symbiotic bacteria in B. dorsalis and provide a foundation for assessing the use of gut microorganisms as bio-control agents for these serious pests.


Assuntos
Microbioma Gastrointestinal , Tephritidae/microbiologia , Animais , Feminino , Geografia , Masculino , RNA Ribossômico 16S/análise , Fatores Sexuais
15.
Artigo em Inglês | MEDLINE | ID: mdl-29733998

RESUMO

Chitinases (Chts) and chitin deacetylases (CDAs) are important enzymes required for chitin metabolism in insects. In this study, 12 Cht-related genes (including seven Cht genes and five imaginal disc growth factor genes) and 6 CDA genes (encoding seven proteins) were identified in Bactrocera dorsalis using genome-wide searching and transcript profiling. Based on the conserved sequences and phylogenetic relationships, 12 Cht-related proteins were clustered into eight groups (group I-V and VII-IX). Further domain architecture analysis showed that all contained at least one chitinase catalytic domain, however, only four (BdCht5, BdCht7, BdCht8 and BdCht10) possessed chitin-binding domains. The subsequent phylogenetic analysis revealed that seven CDAs were clustered into five groups (group I-V), and all had one chitin deacetylase catalytic domain. However, only six exhibited chitin-binding domains. Finally, the development- and tissue-specific expression profiling showed that transcript levels of the 12 Cht-related genes and 6 CDA genes varied considerably among eggs, larvae, pupae and adults, as well as among different tissues of larvae and adults. Our findings illustrate the structural differences and expression patterns of Cht and CDA genes in B. dorsalis, and provide important information for the development of new pest control strategies based on these vital enzymes.


Assuntos
Amidoidrolases/genética , Quitinases/genética , Perfilação da Expressão Gênica , Proteínas de Insetos/genética , Família Multigênica , Tephritidae/genética , Amidoidrolases/análise , Sequência de Aminoácidos , Animais , Domínio Catalítico , Quitinases/análise , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Inseto , Proteínas de Insetos/análise , Masculino , Filogenia , Alinhamento de Sequência , Tephritidae/química
16.
Front Physiol ; 9: 314, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29651254

RESUMO

The citrus red mite, Panonychus citri, a major citrus pest distributed worldwide, has evolved severe resistance to various classes of chemical acaricides/insecticides including pyrethroids. It is well known that the resistance to pyrethroids is mainly caused by point mutations of voltage-gated sodium channel gene in a wide range of pests. However, increasing number of evidences support that pyrethroids resistance might also be resulted from the integrated mechanisms including metabolic mechanisms. In this study, firstly, comparative analysis of RNA-seq data showed that multiple detoxification genes, including a GSTs gene PcGSTd1, were up-regulated in a fenpropathrin-resistant population compared with the susceptible strain (SS). Quantitative real time-PCR results showed that the exposure of fenpropathrin had an induction effect on the transcription of PcGSTd1 in a time-dependent manner. In vitro inhibition and metabolic assay of recombinant PcGSTd1 found that fenpropathrin might not be metabolized directly by this protein. However, its antioxidant role in alleviating the oxidative stress caused by fenpropathrin was demonstrated via the reversely genetic experiment. Our results provide a list of candidate genes which may contribute to a multiple metabolic mechanisms implicated in the evolution of fenpropathrin resistance in the field population of P. citri. Furthermore, during the detoxification process, PcGSTd1 plays an antioxidant role by detoxifying lipid peroxidation products induced by fenpropathrin.

17.
AMB Express ; 8(1): 5, 2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29327267

RESUMO

Phormicins belong to defensin family, which are important antimicrobial peptides (AMPs) in insects. These AMPs are inducible upon challenging by immune triggers. In the present study, we identified the cDNA of a phormicin gene (BdPho) in the oriental fruit fly, Bactrocera dorsalis (Hendel), a ruinous agricultural pest causing great economic losses to fruits and vegetables. The cDNA of BdPho contains a 282 bp open reading frame encoding 93 amino acid residues, and the predicted molecular weight and isoelectric point of BdPho peptide were 9.83 kDa and 7.54, respectively. Quantitative real-time PCR analyses showed that the transcription level of BdPho was the highest in adult during different developmental stages and was the highest in abdomen among adult tagmata. Moreover, BdPho was highly expressed in fat body among different tissues, both in female and male adult. The mRNA level of BdPho was significantly up-regulated to 7.46- and 14.53-fold at 3 and 6 h after the insects were challenged with peptidoglycans from Escherichia coli (PGN-EB), respectively, suggesting its antimicrobial activity against Gram-negative microorganisms. Furthermore, the expression level of BdPho was significantly up-regulated to 3.83-fold after mating, suggesting that female adults might enhance their immunity by up-regulating the expression level of BdPho during mating. These results firstly describe the basic properties of the phormicin gene from B. dorsalis, and lay the foundation for investigating functional properties of AMPs and exploring the molecular mechanisms in the immune system.

18.
Artigo em Inglês | MEDLINE | ID: mdl-28089733

RESUMO

Cecropins and defensins are important antimicrobial peptides in insects and are inducible after injection of immune triggers. In this study, we cloned the cDNAs of two antimicrobial peptides (AMPs), cecropin-2 (BdCec-2) and defensin (BdDef) from Bactrocera dorsalis (Hendel), a serious pest causing great economic losses to fruits and vegetables. The BdCec-2 sequence of 192bp encodes a protein of 63 amino acids residues with a predicted molecular weight of 6.78kD. The 282bp cDNA of BdDef encodes a protein of 93 residues with a predicted molecular weight of 9.81kD. Quantitative real-time PCR analyses showed that BdCec-2 and BdDef had similar expression profiles among development stages, the highest mRNA levels of these two AMP genes were observed in the adult stage. Among different adult body segments and tissues, both genes had similar transcriptional profiles, the highest mRNA levels appeared in abdomen and fat body, which was consistent with the reported fact that fat body was the main organ synthesizing AMPs in insects. The expression of BdCec-2 and BdDef were up-regulated after challenge with peptidoglycans from Escherichia coli (PGN-EB) and Staphylococcus aureus (PGN-SA), respectively, suggesting their antimicrobial activity against Gram-negative and Gram-positive microorganisms. These results describe for the first time the basic properties of the cecropin-2 and defensin genes from B. dorsalis that probably play an important role in the defense response against invading microbes.


Assuntos
Cecropinas/genética , Defensinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Peptidoglicano/farmacologia , Tephritidae/microbiologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Bactérias/química , Cecropinas/imunologia , Clonagem Molecular , Defensinas/imunologia , Feminino , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase , Tephritidae/genética , Regulação para Cima
19.
Peptides ; 80: 48-60, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26297881

RESUMO

In the male reproductive system of insects, the male accessory glands and ejaculatory duct (MAG/ED) are important organs and their primary function is to enhance the fertility of spermatozoa. Proteins secreted by the MAG/ED are also known to induce post-mating changes and immunity responses in the female insect. To understand the gene expression profile in the MAG/ED of the oriental fruit fly Bactrocera dorsalis (Hendel), that is an important pest in fruits, we performed an Illumina-based deep sequencing of mRNA. This yielded 54,577,630 clean reads corresponding to 4.91Gb total nucleotides that were assembled and clustered to 30,669 unigenes (average 645bp). Among them, 20,419 unigenes were functionally annotated to known proteins/peptides in Gene Orthology, Clusters of Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes pathway databases. Typically, many genes were involved in immunity and these included microbial recognition proteins and antimicrobial peptides. Subsequently, the inducible expression of these immunity-related genes was confirmed by qRT-PCR analysis when insects were challenged with immunity-inducible factors, suggesting their function in guaranteeing fertilization success. Besides, we identified some important reproductive genes such as juvenile hormone- and ecdysteroid-related genes in this de novo assembly. In conclusion, this transcriptomic sequencing of B. dorsalis MAG/ED provides insights to facilitate further functional research of reproduction, immunity and molecular evolution of reproductive proteins in this important agricultural pest.


Assuntos
Genitália Masculina/fisiologia , Proteínas de Insetos/genética , Peptídeos/genética , Tephritidae/fisiologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Ecdisona/biossíntese , Ecdisona/genética , Ductos Ejaculatórios/fisiologia , Enzimas/genética , Enzimas/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/metabolismo , Hormônios Juvenis/genética , Hormônios Juvenis/metabolismo , Masculino , Anotação de Sequência Molecular , Peptídeos/metabolismo , Tephritidae/genética , Tephritidae/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...