Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
2.
J Neuroimmune Pharmacol ; 19(1): 11, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530514

RESUMO

Neuro-inflammation involves distinct alterations of microglial phenotypes, containing nocuous pro-inflammatory M1-phenotype and neuroprotective anti-inflammatory M-phenotype. Currently, there is no effective treatment for modulating such alterations. M1/M2 marker of primary microglia influenced by Melatonin were detected via qPCR. Functional activities were explored by western blotting, luciferase activity, EMSA, and ChIP assay. Structure interaction was assessed by molecular docking and LIGPLOT analysis. ER-stress detection was examined by ultrastructure TEM, calapin activity, and ERSE assay. The functional neurobehavioral evaluations were used for investigation of Melatonin on the neuroinflammation in vivo. Melatonin had targeted on Peroxisome Proliferator Activated Receptor Delta (PPARδ) activity, boosted LPS-stimulated alterations in polarization from the M1 to the M2 phenotype, and thereby inhibited NFκB-IKKß activation in primary microglia. The PPARδ agonist L-165,041 or over-expression of PPARδ plasmid (ov-PPARδ) showed similar results. Molecular docking screening, dynamic simulation approaches, and biological studies of Melatonin showed that the activated site was located at PPARδ (phospho-Thr256-PPARδ). Activated microglia had lowered PPARδ activity as well as the downstream SIRT1 formation via enhancing ER-stress. Melatonin, PPARδ agonist and ov-PPARδ all effectively reversed the above-mentioned effects. Melatonin blocked ER-stress by regulating calapin activity and expression in LPS-activated microglia. Additionally, Melatonin or L-165,041 ameliorated the neurobehavioral deficits in LPS-aggravated neuroinflammatory mice through blocking microglia activities, and also promoted phenotype changes to M2-predominant microglia. Melatonin suppressed neuro-inflammation in vitro and in vivo by tuning microglial activation through the ER-stress-dependent PPARδ/SIRT1 signaling cascade. This treatment strategy is an encouraging pharmacological approach for the remedy of neuro-inflammation associated disorders.


Assuntos
Melatonina , PPAR delta , Ratos , Camundongos , Animais , Microglia , PPAR delta/metabolismo , PPAR delta/farmacologia , PPAR delta/uso terapêutico , Melatonina/farmacologia , Lipopolissacarídeos/farmacologia , Sirtuína 1/metabolismo , Simulação de Acoplamento Molecular , Inflamação/metabolismo
3.
Curr Res Toxicol ; 6: 100155, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379848

RESUMO

Paraquat (PQ), a toxic and nonselective bipyridyl herbicide, is one of the most extensively used pesticides in agricultural countries. In addition to pneumotoxicity, the liver is an important target organ for PQ poisoning in humans. However, the mechanism of PQ in hepatotoxicity remains unclear. In this study, we found that exposure of rat hepatic H4IIE cells to PQ (0.1-2 mM) induced significant cytotoxicity and apoptosis, which was accompanied by mitochondria-dependent apoptotic signals, including loss of mitochondrial membrane potential (MMP), cytosolic cytochrome c release, and changes in the Bcl-2/Bax mRNA ratio. Moreover, PQ (0.5 mM) exposure markedly induced JNK and ERK1/2 activation, but not p38-MAPK. Blockade of JNK and ERK1/2 signaling by pretreatment with the specific pharmacological inhibitors SP600125 and PD98059, respectively, effectively prevented PQ-induced cytotoxicity, mitochondrial dysfunction, and apoptotic events. Additionally, PQ exposure stimulated significant oxidative stress-related signals, including reactive oxygen species (ROS) generation and intracellular glutathione (GSH) depletion, which could be reversed by the antioxidant N-Acetylcysteine (NAC). Buffering the oxidative stress response with NAC also effectively abrogated PQ-induced hepatotoxicity, MMP loss, apoptosis, and phosphorylation of JNK and ERK1/2 protein, however, the JNK or ERK inhibitors did not suppress ROS generation in PQ-treated cells. Collectively, these results demonstrate that PQ exposure induces hepatic cell toxicity and death via an oxidative stress-dependent JNK/ERK activation-mediated downstream mitochondria-regulated apoptotic pathway.

4.
Int J Biol Sci ; 20(3): 880-896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250151

RESUMO

Osteosarcoma is an extremely aggressive bone cancer with poor prognosis. Nε-(1-Carboxymethyl)-L-lysine (CML), an advanced glycation end product (AGE), can link to cancer progression, tumorigenesis and metastasis, although the underlying mechanism remains unclear. The role of CML in osteosarcoma progression is still unclear. We hypothesized that CML could promote migration, invasion, and stemness in osteosarcoma cells. CML and its receptor (RAGE; receptor for AGE) were higher expressed at advanced stages in human osteosarcoma tissues. In mouse models, which streptozotocin was administered to induce CML accumulation in the body, the subcutaneous tumor growth was not affected, but the tumor metastasis using tail vein injection model was enhanced. In cell models (MG63 and U2OS cells), CML enhanced tumor sphere formation and acquisition of cancer stem cell characteristics, induced migration and invasion abilities, as well as triggered the epithelial-mesenchymal transition process, which were associated with RAGE expression and activation of downstream signaling pathways, especially the ERK/NFκB pathway. RAGE inhibition elicited CML-induced cell migration, invasion, and stemness through RAGE-mediated ERK/NFκB pathway. These results revealed a crucial role for CML in driving stemness and metastasis in osteosarcoma. These findings uncover a potential CML/RAGE connection and mechanism to osteosarcoma progression and set the stage for further investigation.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Receptor para Produtos Finais de Glicação Avançada , Animais , Humanos , Camundongos , Neoplasias Ósseas/genética , Carcinogênese , Produtos Finais de Glicação Avançada , Lisina , Osteossarcoma/genética , Transdução de Sinais/genética , Receptor para Produtos Finais de Glicação Avançada/genética
5.
J Alzheimers Dis ; 97(3): 1393-1405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250771

RESUMO

BACKGROUND: Cognitive impairment (CI) is one of the major complications in chronic kidney disease patients, especially those with end-stage renal disease (ESRD). Limited biomarkers have been found that can significantly predict ESRD-associated cognitive decline. OBJECTIVE: This cohort study aimed to investigate de novo biomarkers for diagnosis of the ESRD-associated CI. METHODS: In this cohort study, qualified samples were divided into control (with an estimated glomerular filtration rate (eGFR) of≥60 mL/min and a Mini-Mental State Examination (MMSE) score of > 27), ESRD without CI (eGFR < 15 and MMSE > 27), and ESRD with CI (eGFR < 15 and MMSE < 27) groups. Levels of plasma amyloid-ß (Aß)1 - 42, serum indoxyl sulfate, and hematologic and biochemical parameters were measured. RESULTS: Compared to the control group, levels of blood urea nitrogen, creatinine, and indoxyl sulfate were elevated in ESRD patients both without and with CI. Interestingly, ESRD patients with CI had the lowest levels of serum albumin. In contrast, levels of plasma Aß1 - 42 were significantly higher in the ESRD with CI group than in the control and ESRD without CI groups. In addition, the ratio of plasma Aß1 - 42 over serum albumin was significantly higher in the ESRD with CI group than in the control or ESRD without CI groups. Importantly, the area under the receiver operating characteristic curve (AUROC) for CI in the total population by the ratio of Aß1 - 42 over albumin was 0.785 and significant (p < 0.05). CONCLUSIONS: This cohort study has shown that the ratio of plasma Aß1 - 42 over serum albumin can be a de novo biomarker for the diagnosis and prognosis of ESRD-associated cognitive decline.


Assuntos
Disfunção Cognitiva , Falência Renal Crônica , Humanos , Estudos de Coortes , Albumina Sérica , Indicã , Falência Renal Crônica/complicações , Taxa de Filtração Glomerular , Biomarcadores , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/complicações , Peptídeos beta-Amiloides
6.
Antioxidants (Basel) ; 12(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38001784

RESUMO

The accumulation of the uremic toxin indoxyl sulfate (IS) is a key pathological feature of chronic kidney disease (CKD). The effect of IS on ferroptosis and the role of IS-related ferroptosis in CKD are not well understood. We used a renal tubular cell model and an adenine-induced CKD mouse model to explore whether IS induces ferroptosis and injury and affects iron metabolism in the renal cells and the kidneys. Our results showed that exposure to IS induced several characteristics for ferroptosis, including iron accumulation, an impaired antioxidant system, elevated reactive oxygen species (ROS) levels, and lipid peroxidation. Exposure to IS triggered intracellular iron accumulation by upregulating transferrin and transferrin receptors, which are involved in cellular iron uptake. We also observed increased levels of the iron storage protein ferritin. The effects of IS-induced ROS generation, lipid peroxidation, ferroptosis, senescence, ER stress, and injury/fibrosis were effectively alleviated by treatments with an iron chelator deferoxamine (DFO) in vitro and the adsorbent charcoal AST-120 (scavenging the IS precursor) in vivo. Our findings suggest that IS triggers intracellular iron accumulation and ROS generation, leading to the induction of ferroptosis, senescence, ER stress, and injury/fibrosis in CKD kidneys. AST-120 administration may serve as a potential therapeutic strategy.

7.
Am J Cancer Res ; 13(7): 3055-3066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559983

RESUMO

Chondrosarcoma, a treatment-resistant cancer with limited therapeutic options, lacks significant advancements in treatment methods. However, PR-619, a novel inhibitor of deubiquitinating enzymes, has demonstrated anti-tumor effects in various malignancies. This study aimed to investigate the impact of PR-619 on chondrosarcoma both in vitro and in vivo. Two human chondrosarcoma cell lines, SW11353 and JJ012, were utilized. Cell viability was assessed using an MTT assay, while flow cytometry enabled the detection of apoptosis and cell cycle progression. Western blotting analyses were conducted to evaluate apoptosis, cell stress, and endoplasmic reticulum (ER) stress. Furthermore, the in vivo anti-tumor effects of PR-619 were examined using a xenograft mouse model. The results revealed that PR-619 induced cytotoxicity, apoptosis, and cell cycle arrest at the G0/G1 stage by activating caspases, PARP cleavage, and p21. Moreover, PR-619 increased the accumulation of polyubiquitinated proteins and ER stress by activating IRE1, GRP78, caspase-4, CHOP, and other cellular stress responses, including JNK activation. In vivo analysis demonstrated that PR-619 effectively inhibited tumor growth with minimal toxicity in the xenograft mouse model. These findings provide evidence of the anti-tumor effects and induction of cellular and ER stress by PR-619 in human chondrosarcoma, suggesting its potential as a novel therapeutic strategy for in human chondrosarcoma.

8.
Chem Biol Interact ; 382: 110645, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482209

RESUMO

Neuroblastoma, the most common childhood tumor, are highly malignant and fatal because neuroblastoma cells extremely defend against apoptotic targeting. Traditional treatments for neuroblastomas are usually ineffective and lead to serious side effects and poor prognoses. In this study, we investigated the molecular mechanisms of resveratrol-induced insults to neuroblastoma cells and survival extension of nude mice with neuroblastomas, especially in the endoplasmic reticular (ER) stress-intracellular reactive oxygen species (iROS) axis-mediated signals. Resveratrol specifically killed neuroblastoma cells mainly via apoptosis and autophagy rather than necrosis. As to the mechanisms, resveratrol time-dependently triggered productions of Grp78 protein and iROS in neuroblastoma cells. Attenuating the ER stress-iROS signaling axis significantly suppressed resveratrol-induced autophagy, DNA damage, and cell apoptosis. Successively, resveratrol decreased phosphorylation of retinoblastoma protein and induced cell cycle arrest at the S phase, translocation of Bak protein to mitochondria, a reduction in the mitochondrial membrane potential, cascade activation of caspases-9, -3, and -6, and DNA fragmentation. Moreover, weakening the ER stress-iROS axis concomitantly overcome resveratrol-induced decreases in translocation of Rho protein to membranes and succeeding cell migration. Interestingly, administration of resveratrol did not cause significant side effects but could protect the neuroblastoma-bearing nude mice from body weight loss and consequently extended the animal survival. In parallel, resveratrol elevated levels of Grp78 and then induced cell apoptosis in neuroblastoma tissues. This study has shown that resveratrol could kill neuroblastoma cells and extend survival of animals with neuroblastomas by triggering the ER stress-iROS-involved intrinsic apoptosis and suppression of Rho-dependent cell migration. Our results imply the potential of resveratrol as a drug candidate for chemotherapy of neuroblastoma patients.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Neuroblastoma , Animais , Camundongos , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Camundongos Nus , Apoptose , Neuroblastoma/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático
9.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298275

RESUMO

Systemic inflammation is associated with intestinal inflammation and neuroinflammation by imbalancing the gut-brain axis. Low-intensity pulsed ultrasound (LIPUS) has neuroprotective and anti-inflammatory effects. This study explored LIPUS's neuroprotective effects against lipopolysaccharide (LPS)-induced neuroinflammation through transabdominal stimulation. Male C57BL/6J mice were intraperitoneally injected with LPS (0.75 mg/kg) daily for seven days, and abdominal LIPUS was applied to the abdominal area for 15 min/day during the last six days. One day after the last LIPUS treatment, biological samples were collected for microscopic and immunohistochemical analysis. Histological examination showed that LPS administration leads to tissue damage in the colon and brain. Transabdominal LIPUS stimulation attenuated colonic damage, reducing histological score, colonic muscle thickness, and villi shortening. Furthermore, abdominal LIPUS reduced hippocampal microglial activation (labeled by ionized calcium-binding adaptor molecule-1 [Iba-1]) and neuronal cell loss (labeled by microtubule-associated protein 2 [MAP2]). Moreover, abdominal LIPUS attenuated the number of apoptotic cells in the hippocampus and cortex. Altogether, our results indicate that abdominal LIPUS stimulation attenuates LPS-induced colonic inflammation and neuroinflammation. These findings provide new insights into the treatment strategy for neuroinflammation-related brain disorders and may facilitate method development through the gut-brain axis pathway.


Assuntos
Lipopolissacarídeos , Neuroproteção , Animais , Camundongos , Masculino , Lipopolissacarídeos/toxicidade , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Inflamação/induzido quimicamente , Inflamação/terapia , Inflamação/metabolismo
10.
Arch Toxicol ; 97(8): 2231-2244, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37314482

RESUMO

Despite epidemiological evidence that suggests diabetes mellitus is a risk factor for cancer, the link between diabetes mellitus and primary bone cancer is rarely discussed. Chondrosarcomas are primary malignant cartilage tumors with poor prognosis and high metastatic potential. It remains unclear whether hyperglycemia affects the stemness and malignancy of chondrosarcoma cells. Nε-(1-Carboxymethyl)-L-lysine (CML), an advanced glycation end product (AGE), is a major immunological epitope detected in the tissue proteins of diabetic patients. We hypothesized that CML could enhance cancer stemness in chondrosarcoma cells. CML enhanced tumor-sphere formation and the expression of cancer stem cell markers in human chondrosarcoma cell lines. Migration and invasion ability and the epithelial-mesenchymal transition (EMT) process were also induced by CML treatment. Moreover, CML increased the protein expression levels of the receptor for AGE (RAGE), phosphorylated NFκB-p65, and decreased the phosphorylation of AKT and GSK-3. We also found that hyperglycemia with high CML levels facilitated tumor metastasis, whereas tumor growth was not affected in the streptozotocin (STZ)-induced diabetic NOD/SCID tumor xenograft mouse models. Our results indicate that CML enhances chondrosarcoma stemness and metastasis, which may reveal the relationship between AGE and bone cancer metastasis.


Assuntos
Condrossarcoma , Diabetes Mellitus , Hiperglicemia , Camundongos , Animais , Humanos , Produtos Finais de Glicação Avançada , Lisina/metabolismo , Quinase 3 da Glicogênio Sintase , Camundongos Endogâmicos NOD , Camundongos SCID
11.
Metabolites ; 13(5)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37233696

RESUMO

The elderly have higher concentrations of advanced glycation end-products (AGEs). AGEs are considered risk factors that accelerate aging and cause diabetic nephropathy. The effects of AGEs on renal function in the elderly remain to be clarified. This study aimed to explore the role of AGEs in renal function decline in the elderly and the protective effect of resveratrol, a stilbenoid polyphenol, comparing it with aminoguanidine (an AGEs inhibitor). A D-galactose-induced aging mouse model was used to explore the role of AGEs in the process of renal aging. The mice were administered D-galactose subcutaneously for eight weeks in the presence or absence of orally administered aminoguanidine or resveratrol. The results showed that the serum levels of AGEs and renal function markers BUN, creatinine, and cystatin C in the mice significantly increased after the administration of D-galactose, and this outcome could be significantly reversed by treatment with aminoguanidine or resveratrol. The protein expression levels for apoptosis, fibrosis, and aging-related indicators in the kidneys were significantly increased, which could also be reversed by treatment with aminoguanidine or resveratrol. These findings suggest that resveratrol could alleviate AGEs-related renal dysfunction through the improvement of renal cellular senescence, apoptosis, and fibrosis in D-galactose-induced aging in mice.

12.
Artif Cells Nanomed Biotechnol ; 51(1): 268-275, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37195194

RESUMO

Low-intensity pulsed ultrasound (LIPUS) is a kind of therapeutic ultrasound. It can help improve bone fracture repair and soft tissue healing. Our previous study found that LIPUS treatment could halt the chronic kidney disease (CKD) progression in mice; unexpectedly, we observed the improvement of CKD-reduced muscle weights by LIPUS treatment. Here, we further tested the protective potential of LIPUS on CKD-associated muscle wasting/sarcopenia using the CKD mouse models. Mouse models of both unilateral renal ischemia/reperfusion injury (IRI) with nephrectomy and adenine administration were used to induce CKD. LIPUS with condition of 3 MHz, 100 mW/cm2, 20 min/day was applied to the kidney of CKD mice. LIPUS treatment significantly reversed the increased serum BUN/creatinine levels in CKD mice. LIPUS effectively prevented the decrease in grip strength, muscle weight (soleus, tibialis anterior, and gastrocnemius muscles), cross-section areas of muscle fibres, and muscular phosphorylated Akt protein expression by immunohistochemistry, and the increase in muscular atrogenes Atrogin1 and MuRF1 protein expression by immunohistochemistry in CKD mice. These results indicated that LIPUS could help improve weak muscle strength, muscle mass loss, muscle atrophy-related protein expression, and Akt inactivation. LIPUS application may be an alternative non-invasive therapeutic intervention on the management of CKD-associated muscle wasting.


Assuntos
Insuficiência Renal Crônica , Terapia por Ultrassom , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Terapia por Ultrassom/métodos , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Músculo Esquelético , Ondas Ultrassônicas , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/metabolismo
13.
Trop Med Infect Dis ; 8(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37235294

RESUMO

Patients bitten by Protobothrops mucrosquamatus typically experience significant pain, substantial swelling, and potentially blister formation. The appropriate dosage and efficacy of FHAV for alleviating local tissue injury remain uncertain. Between 2017 and 2022, 29 snakebite patients were identified as being bitten by P. mucrosquamatus. These patients underwent point-of-care ultrasound (POCUS) assessments at hourly intervals to measure the extent of edema and evaluate the rate of proximal progression (RPP, cm/hour). Based on Blaylock's classification, seven patients (24%) were classified as Group I (minimal), while 22 (76%) were classified as Group II (mild to severe). In comparison to Group I patients, Group II patients received more FHAV (median of 9.5 vials vs. two vials, p-value < 0.0001) and experienced longer median complete remission times (10 days vs. 2 days, p-value < 0.001). We divided the Group II patients into two subgroups based on their clinical management. Clinicians opted not to administer antivenom treatment to patients in Group IIA if their RPP decelerated. In contrast, for patients in Group IIB, clinicians increased the volume of antivenom in the hope of reducing the severity of swelling or blister formation. Patients in Group IIB received a significantly higher median volume of antivenom (12 vials vs. six vials; p-value < 0.001) than those in Group IIA. However, there was no significant difference in outcomes (disposition, wound necrosis, and complete remission times) between subgroups IIA and IIB. Our study found that FHAV does not appear to prevent local tissue injuries, such as swelling progression and blister formation, immediately after administration. When administering FHAV to patients bitten by P. mucrosquamatus, the deceleration of RPP may serve as an objective parameter to help clinicians decide whether to withhold FHAV administration.

14.
Toxicol In Vitro ; 86: 105483, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36252918

RESUMO

Chlorpyrifos (CPF) is one of the most abundant and widely used organophosphate pesticides for agricultural, industrial, and household purposes in the world. Epidemiological studies have reported that CPF can induce neurotoxic impairments in mammalian, which is linked to an important risk factor for development of neurodegenerative diseases (NDs). However, limited information is available on CPF-induced neurotoxicity, with the underlying exact mechanism remains unclear. In this study, CPF exposure (10-400 µM) significantly reduced Neuro-2a cell viability and induced apoptotic events, including the increase in caspase-3 activity, apoptotic cell population, and cleavage of caspase-3/-7 and PARP. Exposure of Neuro-2a cells to CPF also triggered CHOP activation. Transfection with CHOP-specific siRNA markedly suppressed the expression of CHOP, and attenuated cytotoxicity and apoptotic events in CPF-exposed Neuro-2a cells. Furthermore, CPF exposure obviously evoked the phosphorylation of Akt as well as ROS generation in a time-dependent manner. Pretreatment with LY294002 (an Akt inhibitor) effectively attenuated the CPF-induced Akt phosphorylation, CHOP activation, and apoptotic events, but not that ROS production. Of note, buffering the ROS generation with antioxidant N-acetylcysteine effectively prevented the CPF-induced ROS generation, CHOP activation, and apoptotic events, but not that the Akt phosphorylation. Collectively, these findings indicate that CPF exposure exerts neuronal cytotoxicity via the independent pathways of ROS generation and Akt activation downstream-regulated CHOP-triggered apoptosis, ultimately leading to neuronal cell death.


Assuntos
Clorpirifos , Animais , Clorpirifos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Caspase 3/metabolismo , Estresse Oxidativo , Morte Celular , Apoptose , Mamíferos/metabolismo
15.
J Cachexia Sarcopenia Muscle ; 14(1): 167-181, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36382567

RESUMO

BACKGROUND: Organotin pollutant tributyltin (TBT) is an environmental endocrine disrupting chemical and is a known obesogen and diabetogen. TBT can be detected in human following consumption of contaminated seafood or water. The decrease in muscle strength and quality has been shown to be associated with type 2 diabetes in older adults. However, the adverse effects of TBT on the muscle mass and function still remain unclear. Here, we investigated the effects and molecule mechanisms of low-dose TBT on skeletal muscle regeneration and atrophy/wasting using the cultured skeletal muscle cell and adult mouse models. METHODS: The mouse myoblasts (C2C12) and differentiated myotubes were used to assess the in vitro effects of low-dose tributyltin (0.01-0.5 µM). The in vivo effects of TBT at the doses of 5 and 25 µg/kg/day (n = 6/group), which were five times lower than the established no observed adverse effect level (NOAEL) and equal to NOAEL, respectively, by oral administration for 4 weeks on muscle wasting and muscle regeneration were evaluated in a mouse model with or without glycerol-induced muscle injury/regeneration. RESULTS: TBT reduced myogenic differentiation in myoblasts (myotube with 6-10 nuclei: 53.9 and 35.8% control for 0.05 and 0.1 µM, respectively, n = 4, P < 0.05). TBT also decreased myotube diameter, upregulated protein expression levels of muscle-specific ubiquitin ligases (Atrogin-1 and MuRF1), myostatin, phosphorylated AMPKα, and phosphorylated NFκB-p65, and downregulated protein expression levels of phosphorylated AKT and phosphorylated FoxO1 in myotubes (0.2 and 0.5 µM, n = 6, P < 0.05). Exposure of TBT in mice elevated body weight, decreased muscle mass, and induced muscular dysfunction (5 and 25 µg/kg, P > 0.05 and P < 0.05, respectively, n = 6). TBT inhibited soleus muscle regeneration in mice with glycerol-induced muscle injury (5 and 25 µg/kg, P > 0.05 and P < 0.05, respectively, n = 6). TBT upregulated protein expression levels of Atrogin-1, MuRF1, myostatin, and phosphorylated AMPKα and downregulated protein expression level of phosphorylated FoxO1 in the mouse soleus muscles (5 and 25 µg/kg, P > 0.05 and P < 0.05, respectively, n = 6). CONCLUSIONS: This study demonstrates for the first time that low-dose TBT significantly inhibits myogenic differentiation and triggers myotube atrophy in a cell model and significantly decreases muscle regeneration and muscle mass and function in a mouse model. These findings suggest that low-dose TBT exposure may be an environmental risk factor for muscle regeneration inhibition, atrophy/wasting, and disease-related myopathy.


Assuntos
Diabetes Mellitus Tipo 2 , Disruptores Endócrinos , Doenças Musculares , Humanos , Camundongos , Animais , Idoso , Disruptores Endócrinos/metabolismo , Disruptores Endócrinos/farmacologia , Miostatina/metabolismo , Glicerol , Atrofia Muscular/patologia , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Caquexia/patologia , Regeneração/fisiologia
16.
Arch Toxicol ; 97(2): 547-559, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36319700

RESUMO

Tributyltin (TBT) is known as an endocrine-disrupting chemical. This study investigated the effects and possible mechanisms of TBT exposure on inducing human articular chondrocyte senescence in vitro at the human-relevant concentrations of 0.01-0.5 µM and mouse articular cartilage aging in vivo at the doses of 5 and 25 µg/kg/day, which were 5 times lower than the established no observed adverse effect level (NOAEL) and equal to NOAEL, respectively. TBT significantly increased the senescence-associated ß-galactosidase activity and the protein expression levels of senescence markers p16, p53, and p21 in chondrocytes. TBT induced the protein phosphorylation of both p38 and JNK mitogen-activated protein kinases in which the JNK signaling was a main pathway to be involved in TBT-induced chondrocyte senescence. The phosphorylation of both ataxia-telangiectasia mutated (ATM) and histone protein H2AX (termed γH2AX) was also significantly increased in TBT-treated chondrocytes. ATM inhibitor significantly inhibited the protein expression levels of γH2AX, phosphorylated p38, phosphorylated JNK, p16, p53, and p21. TBT significantly stimulated the mRNA expression of senescence-associated secretory phenotype (SASP)-related factors, including IL-1ß, TGF-ß, TNF-α, ICAM-1, CCL2, and MMP13, and the protein expression of GATA4 and phosphorylated NF-κB-p65 in chondrocytes. Furthermore, TBT by oral gavage for 4 weeks in mice significantly enhanced the articular cartilage aging and abrasion. The protein expression of phosphorylated p38, phosphorylated JNK, GATA4, and phosphorylated NF-κB-p65, and the mRNA expression of SASP-related factors were enhanced in the mouse cartilages. These results suggest that TBT exposure can trigger human chondrocyte senescence in vitro and accelerating mouse articular cartilage aging in vivo.


Assuntos
Cartilagem Articular , Senescência Celular , Condrócitos , Compostos de Trialquitina , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Compostos de Trialquitina/toxicidade
17.
Cell Biol Toxicol ; 39(5): 1873-1896, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-34973135

RESUMO

BACKGROUND AND PURPOSE: Histone deacetylase (HDAC) inhibitors (HDIs) can modulate the epithelial-mesenchymal transition (EMT) progression and inhibit the migration and invasion of cancer cells. Emerging as a novel class of anti-cancer drugs, HDIs are attracted much attention in the field of drug discovery. This study aimed to discern the underlying mechanisms of Honokiol in preventing the metastatic dissemination of gastric cancer cells by inhibiting HDAC3 activity/expression. EXPERIMENTAL APPROACH: Clinical pathological analysis was performed to determine the relationship between HDAC3 and tumor progression. The effects of Honokiol on pharmacological characterization, functional, transcriptional activities, organelle structure changes, and molecular signaling were analyzed using binding assays, differential scanning calorimetry, luciferase reporter assay, HDAC3 activity, ER stress response element activity, transmission electron microscopy, immune-blotting, and Wnt/ß-catenin activity assays. The in vivo effects of Honokiol on peritoneal dissemination were determined by a mouse model and detected by PET/CT tomography. KEY RESULTS: HDAC3 over-expression was correlated with poor prognosis. Honokiol significantly abolished HDAC3 activity (Y298) via inhibition of NFκBp65/CEBPß signaling, which could be reversed by the over-expression of plasmids of NFκBp65/CEBPß. Treatments with 4-phenylbutyric acid (a chemical chaperone) and calpain-2 gene silencing inhibited Honokiol-inhibited NFκBp65/CEBPß activation. Honokiol increased ER stress markers and inhibited EMT-associated epithelial markers, but decreased Wnt/ß-catenin activity. Suppression of HDAC3 by both Honokiol and HDAC3 gene silencing decreased cell migration and invasion in vitro and metastasis in vivo. CONCLUSIONS AND IMPLICATIONS: Honokiol acts by suppressing HDAC3-mediated EMT and metastatic signaling. By prohibiting HDAC3, metastatic dissemination of gastric cancer may be blocked. Conceptual model showing the working hypothesis on the interaction among Honokiol, HDAC3, and ER stress in the peritoneal dissemination of gastric cancer. Honokiol targeting HDAC3 by ER stress cascade and mitigating the peritoneal spread of gastric cancer. Honokiol-induced ER stress-activated calpain activity targeted HDAC3 and blocked Tyr298 phosphorylation, subsequently blocked cooperating with EMT transcription factors and cancer progression. The present study provides evidence to demonstrate that HDAC3 is a positive regulator of EMT and metastatic growth of gastric cancer cells. The findings here imply that overexpressed HDAC3 is a potential therapeutic target for honokiol to reverse EMT and prevent gastric cancer migration, invasion, and metastatic dissemination. • Honokiol significantly abolished HDAC3 activity on catalytic tyrosine 298 residue site. In addition, Honokiol-induced ER stress markedly inhibited HDAC3 expression via inhibition of NFκBp65/CEBPß signaling. • HDAC3, which is a positive regulator of metastatic gastric cancer cell growth, can be significantly inhibited by Honokiol. • Opportunities for HDAC3 inhibition may be a potential therapeutic target for preventing gastric cancer metastatic dissemination.


Assuntos
Neoplasias Gástricas , beta Catenina , Animais , Camundongos , Calpaína/antagonistas & inibidores , Calpaína/genética , Calpaína/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Histona Desacetilases/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Inibidores de Histona Desacetilases
18.
iScience ; 26(12): 108476, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187189

RESUMO

Prolonged cerebral hypoperfusion after the return of spontaneous circulation (ROSC) from cardiac arrest (CA) may lead to poor neurological recovery. In a 7-min asphyxia-induced CA rat model, four combinations of inhaled oxygen (iO2) and carbon dioxide (iCO2) were administered for 150 min post-ROSC and compared in a randomized animal trial. At the end of administration, the partial pressure of brain tissue oxygenation (PbtO2) monitored in the hippocampal CA1 region returned to the baseline for the 88% iO2 [ΔPbtO2, median: -0.39 (interquartile range: 5.6) mmHg] and 50% iO2 [ΔpbtO2, -2.25 (10.9) mmHg] groups; in contrast, PbtO2 increased substantially in the 88% iO2+12% iCO2 [ΔpbtO2, 35.05 (16.0) mmHg] and 50% iO2+12% iCO2 [ΔpbtO2, 42.03 (31.7) mmHg] groups. Pairwise comparisons (post hoc Dunn's test) indicated the significant role of 12% iCO2 in augmenting PbtO2 during the intervention and improving neurological recovery at 24 h post-ROSC. Facilitating brain reoxygenation may improve post-CA neurological outcomes.

19.
J Food Drug Anal ; 31(4): 683-695, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38526822

RESUMO

Adlay (Coix lachryma-jobi L.) is a traditional Chinese herbal medicine with various biological activities. We investigated the anti-diabetic effects of different parts of adlay seeds, including polished adlay (PA), adlay bran (AB) and dehulled adlay (DA) in a streptozotocin (STZ)/high fat diet (HFD) diabetic rat model (DM). DM rats supplemented with or without PA (43%), AB (3%), or DA (46%) diet for 8 weeks. The plasma glucose and insulin levels and the insulin resistance index (HOMA-IR) were increased in DM group; among the three adlay diets, DA has the best effects attenuating all of these alterations in DM rats. Both AB and DA alleviated diabetes-impaired glucose tolerance. The increased hepatic phosphoenolpyruvate carboxykinase protein expression in DM group was improved by all of the three adlay diets. The increased ratio of glucose-6-phosphatase to glucokinase in DM group was suppressed by DA supplementation, further suggesting DA diet is most effective among the three diets. Both AB and DA diets had beneficial effects against hepatic steatosis, with better effects observed in DA group. These results suggest that the DA diet, composed of both polished adlay and adlay bran, possesses the best potential to improve glucose homeostasis, at least in part, by alleviating hepatic glucose metabolism and steatosis.


Assuntos
Coix , Diabetes Mellitus Experimental , Fígado Gorduroso , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Estreptozocina/efeitos adversos , Gluconeogênese , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo
20.
Toxicol Rep ; 9: 834-841, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518413

RESUMO

Steady-calcium formula (SCF), a functional food mixture with potential of joint care, contains five major ingredients. However, the uncertain cross-reactivity among these included ingredients cannot be excluded. Hence, it is important to ensure the safety of this mixture. In this study, the safety of SCF was evaluated through in vitro genotoxicity assessment and 28-day oral toxicity study in rats. The bacterial reverse mutation test and mammalian chromosome aberration test displayed that SCF did not induce mutagenicity and clastogenicity. The 28-day repeated dose assessment of SCF in rats revealed no mortality and adverse effects in clinical signs, body weight, urinalysis, hematology, organ weight, and histopathology at all treated groups. Although some significant changes were observed in food intake and parameters of serum biochemistry at the highest dose in males, they were not dose-related and considered to be within normal range. These findings indicate that SCF does not possess genotoxic potential and no obvious evidence of subacute toxicity. These results demonstrate for the first time that the genotoxicity and subacute toxicity for SCF are negative under our experimental conditions and the no observed adverse effect level (NOAEL) of SCF may be defined as at least 5470 mg/kg/day.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...