Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Drug Resist Updat ; 70: 100987, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392558

RESUMO

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been widely used for human non-small-cell lung cancer (NSCLC) treatment. However, acquired resistance to EGFR-TKIs is the major barrier of treatment success, and new resistance mechanism remains to be elucidated. In this study, we found that elevated NADPH oxidase 4 (NOX4) expression was associated with acquired EGFR-TKIs resistance. Gefitinib is the first-generation FDA-approved EGFR-TKI, and osimertinib is the third-generation FDA-approved EGFR-TKI. We demonstrated that NOX4 knockdown in the EGFR-TKI resistant cells enabled the cells to become sensitive to gefitinib and osimertinib treatment, while forced expression of NOX4 in the sensitive parental cells was sufficient to induce resistance to gefitinib and osimertinib in the cells. To elucidate the mechanism of NOX4 upregulation in increasing TKIs resistance, we found that knockdown of NOX4 significantly down-regulated the expression of transcription factor YY1. YY1 bound directly to the promoter region of IL-8 to transcriptionally activate IL-8 expression. Interestingly, knockdown of NOX4 and IL-8 decreased programmed death ligand 1 (PD-L1) expression, which provide new insight on TKIs resistance and immune escape. We found that patients with higher NOX4 and IL-8 expression levels showed a shorter survival time compared to those with lower NOX4 and IL-8 expression levels in response to the anti-PD-L1 therapy. Knockdown of NOX4, YY1 or IL-8 alone inhibited angiogenesis and tumor growth. Furthermore, the combination of NOX4 inhibitor GKT137831 and gefitinib had synergistic effect to inhibit cell proliferation and tumor growth and to increase cellular apoptosis. These findings demonstrated that NOX4 and YY1 were essential for mediating the acquired EGFR-TKIs resistance. IL-8 and PD-L1 are two downstream targets of NOX4 to regulate TKIs resistance and immunotherapy. These molecules may be used as potential new biomarkers and therapeutic targets for overcoming TKIs resistance in the future.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinogênese , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Interleucina-8/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , NADPH Oxidase 4/genética , /farmacologia
2.
Aging (Albany NY) ; 15(9): 3791-3806, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37171386

RESUMO

Esophageal cancer (EC) is considered one of the most lethal cancers in human beings, and multiple miRNAs have been investigated to be involved in EC development by targeting their target genes. However, the function and related mechanism of miRNA-497 on EC tumorigenesis remain uncertain. This study first demonstrated that the expression levels of miR-497 in esophageal cancer specimens and cells were down-regulated. Forced expression of miR-497 inhibited cell proliferation, tube formation and migration in EC cells. To further investigate the potential molecular mechanism of miR-497 suppression in regulating EC, we found that miR-497 directly binds to the 3'-untranslational region of QKI, miR-497 overexpression suppressed QKI expression. We further found that overexpression of miR-497 enhanced the effect of chemotherapy in EC cell lines, and prevented the tumor growth of EC in vivo. Our findings indicated that miR-497 suppression increased QKI expression and therapeutic resistance of esophageal cancer, which is likely to be a biomarker of EC progression and potential therapeutic target.


Assuntos
Neoplasias Esofágicas , MicroRNAs , Humanos , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/genética
3.
World J Clin Cases ; 11(10): 2246-2253, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37122522

RESUMO

BACKGROUND: Coronary artery stenosis (CAS) is the most common type of heart disease and the leading cause of death in both men and women globally. CAS occurs when the arteries that supply blood to the heart muscle harden and become narrower due to plaque buildup - cholesterol and other material - on their inner walls. As a result, the heart muscle cannot receive the blood or oxygen it needs. Most heart attacks happen when a blood clot suddenly cuts off the hearts' blood supply, causing permanent heart damage. AIM: To analyze the relationship between the left ventricular ejection fraction (LVEF), left ventricular strain (LVS), and coronary stenosis. METHODS: A total of 190 participants were enrolled in this trail. The control group comprised 93 healthy individuals, and observation group comprised 97 patients with coronary heart disease who were hospitalized between July 2020 and September 2021. Coronary lesions were assessed using the Gensini score, and the LVEF and LVS were measured using magnetic resonance imaging (MRI). The interaction between the LVEF and LVS was examined using a linear regression model. The relationship between LVEF and coronary stenosis was examined using Spearman's correlation. RESULTS: The LVEF of the observation group was lower than that of the control group. The left ventricular end-systolic volume (LVESV) and left ventricular end-diastolic volume (LVEDV) of the observation group were significantly higher than those of the control group (P < 0.05). The longitudinal and circumferential strains (LS, CS) of the observation group were significantly higher than those of the control group; however, the radial strain (RS) of the observation group was significantly lower than that of the control group (P < 0.05). LVS, LS, and CS were significantly negatively correlated with the LVEF, and RS was positively correlated with the LVEF. There were significant differences in the LVEF, LVESV, and LVEDV of patients with different Gensini scores; the LVEF significantly decreased and the LVESV and LVEDV increased with increasing Gensini scores (P < 0.05). In the observation group, the LVEF was negatively correlated and the LVESV and LVEDV were positively correlated with coronary stenosis (P < 0.05). CONCLUSION: The LVEF measured using MRI is significantly linearly correlated with LVS and negatively correlated with coronary stenosis.

4.
Acta Pharmacol Sin ; 44(7): 1487-1499, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36759643

RESUMO

Ebola virus (EBOV) causes hemorrhagic fever in humans with high morbidity and fatality. Although over 45 years have passed since the first EBOV outbreak, small molecule drugs are not yet available. Ebola viral protein VP30 is a unique RNA synthesis cofactor, and the VP30/NP interaction plays a critical role in initiating the transcription and propagation of EBOV. Here, we designed a high-throughput screening technique based on a competitive binding assay to bind VP30 between an NP-derived peptide and a chemical compound. By screening a library of 8004 compounds, we obtained two lead compounds, Embelin and Kobe2602. The binding of these compounds to the VP30-NP interface was validated by dose-dependent competitive binding assay, surface plasmon resonance, and thermal shift assay. Moreover, the compounds were confirmed to inhibit the transcription and replication of the Ebola genome by a minigenome assay. Similar results were obtained for their two respective analogs (8-gingerol and Kobe0065). Interestingly, these two structurally different molecules exhibit synergistic binding to the VP30/NP interface. The antiviral efficacy (EC50) increased from 1 µM by Kobe0065 alone to 351 nM when Kobe0065 and Embelin were combined in a 4:1 ratio. The synergistic anti-EBOV effect provides a strong incentive for further developing these lead compounds in future studies.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Ebolavirus/genética , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/tratamento farmacológico , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Replicação Viral
5.
Acta Pharmacol Sin ; 44(4): 811-821, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36151392

RESUMO

Herpes simplex virus (HSV) infection induces a rapid and transient increase in intracellular calcium concentration ([Ca2+]i), which plays a critical role in facilitating viral entry. T-type calcium channel blockers and EGTA, a chelate of extracellular Ca2+, suppress HSV-2 infection. But the cellular mechanisms mediating HSV infection-activated Ca2+ signaling have not been completely defined. In this study we investigated whether the TRPV4 channel was involved in HSV-2 infection in human vaginal epithelial cells. We showed that the TRPV4 channel was expressed in human vaginal epithelial cells (VK2/E6E7). Using distinct pharmacological tools, we demonstrated that activation of the TRPV4 channel induced Ca2+ influx, and the TRPV4 channel worked as a Ca2+-permeable channel in VK2/E6E7 cells. We detected a direct interaction between the TRPV4 channel protein and HSV-2 glycoprotein D in the plasma membrane of VK2/E6E7 cells and the vaginal tissues of HSV-2-infected mice as well as in phallic biopsies from genital herpes patients. Pretreatment with specific TRPV4 channel inhibitors, GSK2193874 (1-4 µM) and HC067047 (100 nM), or gene silence of the TRPV4 channel not only suppressed HSV-2 infectivity but also reduced HSV-2-induced cytokine and chemokine generation in VK2/E6E7 cells by blocking Ca2+ influx through TRPV4 channel. These results reveal that the TRPV4 channel works as a Ca2+-permeable channel to facilitate HSV-2 infection in host epithelial cells and suggest that the design and development of novel TRPV4 channel inhibitors may help to treat HSV-2 infections.


Assuntos
Infecções por Herpesviridae , Herpesvirus Humano 2 , Canais de Cátion TRPV , Animais , Feminino , Humanos , Camundongos , Sinalização do Cálcio/genética , Sinalização do Cálcio/fisiologia , Células Epiteliais/metabolismo , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/metabolismo , Transdução de Sinais/fisiologia , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/fisiologia
6.
Pharmacol Res ; 184: 106464, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36162600

RESUMO

Uveal melanoma (UM) is the most common intraocular cancer in adults. UMs are usually initiated by a mutation in GNAQ or GNA11 (encoding Gq or G11, respectively), unlike cutaneous melanomas (CMs), which usually carry a BRAF or NRAS mutation. Currently, there are no clinically effective targeted therapies for UM carrying Gq/11 mutations. Here, we identified a causal link between Gq activating mutations and hypersensitivity to bromodomain and extra-terminal (BET) inhibitors. BET inhibitors transcriptionally repress YAP via BRD4 regardless of Gq mutation status, independently of Hippo core components LATS1/2. In contrast, YAP/TAZ downregulation reduces BRD4 transcription exclusively in Gq-mutant cells and LATS1/2 double knockout cells, both of which are featured by constitutively active YAP/TAZ. The transcriptional interdependency between BRD4 and YAP identified in Gq-mutated cells is responsible for the preferential inhibitory effect of BET inhibitors on the growth and dissemination of Gq-mutated UM cells compared to BRAF-mutated CM cells in both culture cells and animal models. Our findings suggest BRD4 as a viable therapeutic target for Gq-driven UMs that are addicted to unrestrained YAP function.


Assuntos
Melanoma , Proteínas Nucleares , Animais , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias Uveais
7.
Acta Pharmacol Sin ; 43(9): 2397-2409, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35165399

RESUMO

Rapalogs (everolimus and temsirolimus) are allosteric mTORC1 inhibitors and approved agents for advanced clear cell renal cell carcinoma (ccRCC), although only a subset of patients derive clinical benefit. Progress in genomic characterization has made it possible to generate comprehensive profiles of genetic alterations in ccRCC; however, the correlations between recurrent somatic mutations and rapalog efficacy remain unclear. Here, we demonstrate by using multiple patient-derived ccRCC cell lines that compared to PTEN-proficient cells, PTEN-deficient cells exhibit hypersensitivity to rapalogs. Rapalogs inhibit cell proliferation by inducing G0/G1 arrest without inducing apoptosis in PTEN-deficient ccRCC cell lines. Using isogenic cell lines generated by CRISPR/Cas9, we validate the correlation between PTEN loss and rapalog hypersensitivity. In contrast, deletion of VHL or chromatin-modifying genes (PBRM1, SETD2, BAP1, or KDM5C) fails to influence the cellular response to rapalogs. Our mechanistic study shows that ectopic expression of an activating mTOR mutant (C1483F) antagonizes PTEN-induced cell growth inhibition, while introduction of a resistant mTOR mutant (A2034V) enables PTEN-deficient ccRCC cells to escape the growth inhibitory effect of rapalogs, suggesting that PTEN loss generates vulnerability to mTOR inhibition. PTEN-deficient ccRCC cells are more sensitive to the inhibitory effects of temsirolimus on cell migration and tumor growth in zebrafish and xenograft mice, respectively. Of note, PTEN protein loss as detected by immunohistochemistry is much more frequent than mutations in the PTEN gene in ccRCC patients. Our study suggests that PTEN loss correlates with rapalog sensitivity and could be used as a marker for ccRCC patient selection for rapalog therapy.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Inibidores de MTOR , Camundongos , Mutação , PTEN Fosfo-Hidrolase/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra
8.
Biomater Sci ; 10(5): 1267-1280, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35080534

RESUMO

The instinctive protective stress responses of tumor cells hamper low-temperature photothermal therapy (LTPTT), resulting in tumor recurrence and metastasis. The rapid blood clearance and low-efficiency tumor enrichment of nanomedicines also decrease the efficacy of LTPTT. In this study, we fabricated coassembled photothermal agents (indocyanine green, ICG) and autophagy inhibitors (chloroquine, CQ) and red blood cell and cancer cell hybrid membrane (RCm)-camouflaged ICGCQ@RCm nanoparticles (ICGCQ@RCm NPs) to enhance tumor LTPTT. The ICGCQ@RCm NPs exhibited prolonged blood drug circulation and markedly enhanced drug accumulation in tumor tissues. The ICGCQ@RCm NPs reduced the thermal tolerance of tumor cells to sensitize ICG-mediated LTPTT by inhibiting protective autophagy. The ICGCQ@RCm NPs exerted strong immunogenic cell death (ICD) after efficient LTPTT to activate antitumor immunity. In addition, ICGCQ@RCms optimized the therapeutic efficacy by imaging-guided LTPTT, taking advantage of the near-infrared (NIR) fluorescence of ICG. Consequently, the ICGCQ@RCm NPs effectively inhibited tumors under mild LTPTT, significantly suppressed tumor metastasis and prolonged the survival time of tumor-bearing mice. Furthermore, the ICGCQ@RCm NPs showed high biosafety in vitro and in vivo. The ICGCQ@RCm NPs demonstrated tumor-targeting and imaging-guided autophagy inhibition-sensitized LTPTT using two Food and Drug Administration (FDA)-approved drugs, which have great potential for clinical application.


Assuntos
Hipertermia Induzida , Nanopartículas , Animais , Autofagia , Biomimética , Linhagem Celular Tumoral , Hipertermia Induzida/métodos , Camundongos , Nanopartículas/uso terapêutico , Terapia Fototérmica
9.
Acta Pharmacol Sin ; 43(7): 1803-1815, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34737422

RESUMO

The tumor suppressor gene BAP1 encodes a widely expressed deubiquitinase for histone H2A. Both hereditary and acquired mutations are associated with multiple cancer types, including cutaneous melanoma (CM), uveal melanoma (UM), and clear cell renal cell carcinoma (ccRCC). However, there is no personalized therapy for BAP1-mutant cancers. Here, we describe an epigenetic drug library screening to identify small molecules that exert selective cytotoxicity against BAP1 knockout CM cells over their isogenic parental cells. Hit characterization reveals that BAP1 loss renders cells more vulnerable to bromodomain and extraterminal (BET) inhibitor-induced transcriptional alterations, G1/G0 cell cycle arrest and apoptosis. The association of BAP1 loss with sensitivity to BET inhibitors is observed in multiple BAP1-deficient cancer cell lines generated by gene editing or derived from patient tumors as well as immunodeficient xenograft and immunocompetent allograft murine models. We demonstrate that BAP1 deubiquitinase activity reduces sensitivity to BET inhibitors. Concordantly, ectopic expression of RING1A or RING1B (H2AK119 E3 ubiquitin ligases) enhances sensitivity to BET inhibitors. The mechanistic study shows that the BET inhibitor OTX015 exerts a more potent suppressive effect on the transcription of various proliferation-related genes, especially MYC, in BAP1 knockout cells than in their isogenic parental cells, primarily by targeting BRD4. Furthermore, ectopic expression of Myc rescues the BET inhibitor-sensitizing effect induced by BAP1 loss. Our study reveals new approaches to specifically suppress BAP1-deficient cancers, including CM, UM, and ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Melanoma , Neoplasias Cutâneas , Animais , Carcinoma de Células Renais/tratamento farmacológico , Proteínas de Ciclo Celular , Humanos , Neoplasias Renais/genética , Melanoma/genética , Camundongos , Proteínas Nucleares , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Neoplasias Uveais , Melanoma Maligno Cutâneo
10.
Acta Pharmacol Sin ; 43(4): 992-1000, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34341510

RESUMO

Dysregulation of NLRP3 inflammasome results in uncontrolled inflammation, which participates in various chronic diseases. TWIK2 potassium channel mediates potassium efflux that has been reported to be an essential upstream mechanism for ATP-induced NLRP3 inflammasome activation. Thus, TWIK2 potassium channel could be a potential drug target for NLRP3-related inflammatory diseases. In the present study we investigated the effects of known K2P channel modulators on TWIK2 channel expressed in a heterologous system. In order to increase plasma membrane expression and thus TWIK2 currents, a mutant channel with three mutations (TWIK2I289A/L290A/Y308A) in the C-terminus was expressed in COS-7 cells. TWIK2 currents were assessed using whole-cell voltage-clamp recording. Among 6 known K2P channel modulators tested (DCPIB, quinine, fluoxetine, ML365, ML335, and TKDC), ML365 was the most potent TWIK2 channel blocker with an IC50 value of 4.07 ± 1.5 µM. Furthermore, ML365 selectively inhibited TWIK2 without affecting TWIK1 or THIK1 channels. We showed that ML365 (1, 5 µM) concentration-dependently inhibited ATP-induced NLRP3 inflammasome activation in LPS-primed murine BMDMs, whereas it did not affect nigericin-induced NLRP3, or non-canonical, AIM2 and NLRC4 inflammasomes activation. Knockdown of TWIK2 significantly impaired the inhibitory effect of ML365 on ATP-induced NLRP3 inflammasome activation. Moreover, we demonstrated that pre-administration of ML365 (1, 10, 25 mg/kg, ip) dose-dependently ameliorated LPS-induced endotoxic shock in mice. In a preliminary pharmacokinetic study conducted in rats, ML365 showed good absolute oral bioavailability with F value of 22.49%. In conclusion, ML365 provides a structural reference for future design of selective TWIK2 channel inhibitors in treating related inflammatory diseases.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Ligação a DNA , Inflamassomos/metabolismo , Inflamação , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos
11.
Acta Pharmacol Sin ; 43(4): 771-780, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34267343

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can induce acute inflammatory response like acute lung inflammation (ALI) or acute respiratory distress syndrome, leading to severe progression and mortality. Therapeutics for treatment of SARS-CoV-2-triggered respiratory inflammation are urgent to be discovered. Our previous study shows that Salvianolic acid C potently inhibits SARS-CoV-2 infection. In this study, we investigated the antiviral effects of a Salvia miltiorrhiza compound, Danshensu, in vitro and in vivo, including the mechanism of S protein-mediated virus attachment and entry into target cells. In authentic and pseudo-typed virus assays in vitro, Danshensu displayed a potent antiviral activity against SARS-CoV-2 with EC50 of 0.97 µM, and potently inhibited the entry of SARS-CoV-2 S protein-pseudo-typed virus (SARS-CoV-2 S) into ACE2-overexpressed HEK-293T cells (IC50 = 0.31 µM) and Vero-E6 cell (IC50 = 4.97 µM). Mice received SARS-CoV-2 S via trachea to induce ALI, while the VSV-G treated mice served as controls. The mice were administered Danshensu (25, 50, 100 mg/kg, i.v., once) or Danshensu (25, 50, 100 mg·kg-1·d-1, oral administration, for 7 days) before SARS-CoV-2 S infection. We showed that SARS-CoV-2 S infection induced severe inflammatory cell infiltration, severely damaged lung tissue structure, highly expressed levels of inflammatory cytokines, and activated TLR4 and hyperphosphorylation of the NF-κB p65; the high expression of angiotensinogen (AGT) and low expression of ACE2 at the mRNA level in the lung tissue were also observed. Both oral and intravenous pretreatment with Danshensu dose-dependently alleviated the pathological alterations in mice infected with SARS-CoV-2 S. This study not only establishes a mouse model of pseudo-typed SARS-CoV-2 (SARS-CoV-2 S) induced ALI, but also demonstrates that Danshensu is a potential treatment for COVID-19 patients to inhibit the lung inflammatory response.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Humanos , Lactatos , Camundongos , Glicoproteína da Espícula de Coronavírus
12.
Antimicrob Agents Chemother ; 65(12): e0047021, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34491808

RESUMO

Eliminating the latent HIV reservoir remains a difficult problem for creating an HIV functional cure or achieving remission. The "block-and-lock" strategy aims to steadily suppress transcription of the viral reservoir and lock the HIV promoter in deep latency using latency-promoting agents (LPAs). However, to date, most of the investigated LPA candidates are not available for clinical trials, and some of them exhibit immune-related adverse reactions. The discovery and development of new, active, and safe LPA candidates for an HIV cure are necessary to eliminate residual HIV-1 viremia through the block-and-lock strategy. In this study, we demonstrated that a new small-molecule compound, Q308, silenced the HIV-1 provirus by inhibiting Tat-mediated gene transcription and selectively downregulating the expression levels of the facilitated chromatin transcription (FACT) complex. Strikingly, Q308 induced the preferential apoptosis in HIV-1 latently infected cells, indicating that Q308 may reduce the size of the viral reservoir and thus further prevent viral rebound. These findings highlight that Q308 is a novel and safe anti-HIV-1 inhibitor candidate for a functional cure.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Cromatina , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Humanos , Provírus/genética , Latência Viral
13.
Int J Biol Macromol ; 190: 178-188, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34461156

RESUMO

At present, there are still no anti-Zika virus (ZIKV) drugs or vaccines approved by FDA with accurate targets and antiviral mechanisms. Considering the RNA G-quadruplex sequences in ZIKV genome, it is very meaningful to develop G-quadruplex binders as potential anti-ZIKV drugs with novel and accurate targets. In this paper, five classical G-quadruplex binders including Ber, Braco 19, NiL, 360A and PDS have been chosen to discuss their interaction with ZIKV RNA G-quadruplexes. PDS shows higher binding affinity and thermal stability than the other G-quadruplex binders. This property is further evidenced in cells by immunofluorescence microscopy. And PDS shows higher anti-ZIKV activity (EC50 = 4.2 ± 0.4 µM) than the other G-quadruplex binders as well as the positive control ribavirin, with a low cytotoxicity. By time-of-addition assay, PDS exerts antiviral activity at the post-entry process of ZIKV replication cycle, thus inhibiting ZIKV mRNA replication and protein expression. Furthermore, PDS combines with ZIKV NS2B-NS3 protease and reduces its catalytic activity. This study suggests that G-quadruplex binder PDS is an effective multi-target ZIKV inhibitor, which provides more guidance to design some novel anti-ZIKV drugs targeting ZIKV RNA G-quadruplexes.


Assuntos
Aminoquinolinas/farmacologia , Antivirais/farmacologia , Quadruplex G , Ácidos Picolínicos/farmacologia , Zika virus/fisiologia , Aminoquinolinas/química , Animais , Chlorocebus aethiops , Cinética , Peptídeo Hidrolases/metabolismo , Ácidos Picolínicos/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Termodinâmica , Células Vero , Proteínas Virais/metabolismo , Zika virus/efeitos dos fármacos , Zika virus/genética
14.
Ann Transl Med ; 8(14): 865, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32793709

RESUMO

BACKGROUND: Fabry disease (FD) is an X-linked recessive inheritance lysosomal storage disorder due to mutations in the GLA gene leading to deficiency of lysosomal α-galactosidase A (α-Gal A) and has a wide range of clinical presentations. Over 900 GLA gene mutations are currently known and of those most are thought not to be clinically significant, some with doubtful clinical significance, posing diagnostic and prognostic difficulties for the clinician. METHODS: Whole-exome sequencing (WES) was performed to detect the mutation in family members with Fabry disease. The function of g.1170C>T mutation was confirmed by dual luciferase system. RESULTS: A total of 1,375 variants were found in a Chinese family with FD. A missense variants c.1025C>T (p.Arg342Gln) which have been previously reported in association with FD and g.1170C>T single-nucleotide polymorphism (SNP) in the GLA gene were found in five patients. The g.1170C>T SNP affects transcription of GLA gene, presumably the transcription start site. Female patients only have hypohidrosis and neuropathic pain, while male patients have severe symptoms with simultaneous renal impairment. CONCLUSIONS: Two simultaneous variants in cis of the GLA gene, c.1025C>T (p.Arg342Gln) and g.1170C>T, were verified in Chinese individuals, and the corresponding clinical symptoms were described. The disease severity in male patients is worse than in female patients. These results may be helpful for genetic counseling, diagnosis and prognosis of patients with FD.

15.
Acta Pharmacol Sin ; 41(9): 1141-1149, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32747721

RESUMO

Coronavirus disease 2019 is a newly emerging infectious disease currently spreading across the world. It is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The spike (S) protein of SARS-CoV-2, which plays a key role in the receptor recognition and cell membrane fusion process, is composed of two subunits, S1 and S2. The S1 subunit contains a receptor-binding domain that recognizes and binds to the host receptor angiotensin-converting enzyme 2, while the S2 subunit mediates viral cell membrane fusion by forming a six-helical bundle via the two-heptad repeat domain. In this review, we highlight recent research advance in the structure, function and development of antivirus drugs targeting the S protein.


Assuntos
Antivirais/farmacologia , Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Glicoproteína da Espícula de Coronavírus/fisiologia , Internalização do Vírus/efeitos dos fármacos , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/fisiologia , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Descoberta de Drogas/métodos , Humanos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , SARS-CoV-2
16.
Acta Pharmacol Sin ; 41(2): 229-236, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31431733

RESUMO

In chronic infectious diseases caused by gram-negative bacteria, such as osteomyelitis, septic arthritis, and periodontitis, osteoclastic activity is enhanced with elevated inflammation, which disturbs the bone homeostasis and results in osteolysis. Lipopolysaccharide (LPS), as a bacteria product, plays an important role in this process. Recent evidence shows that an antimalarial drug artesunate attenuates LPS-induced osteolysis independent of RANKL. In this study we evaluated the effects of artesunate on LPS-induced osteoclastogenesis in vitro and femur osteolysis in vivo, and explored the mechanisms underlying the effects of artesunate on LPS-induced osteoclast differentiation independent of RANKL. In preosteoclastic RAW264.7 cells, we found that artesunate (1.56-12.5 µM) dose dependently inhibited LPS-induced osteoclast formation accompanied by suppressing LPS-stimulated osteoclast-related gene expression (Fra-2, TRAP, Cathepsin K, ß3-integrin, DC-STAMP, and Atp6v0d2). We showed that artesunate (3.125-12.5 µM) inhibited LPS-stimulated nuclear factor of activated T cells c1 (NFATc1) but not NF-κB transcriptional activity; artesunate (6.25, 12.5 µM) significantly inhibited LPS-stimulated NFATc1 protein expression. Furthermore, artesunate treatment markedly suppressed LPS-induced Ca2+ influx, and decreased the expression of PP2B-Aα (calcineurin) and pPLCγ1 in the cells. In addition, artesunate treatment significantly decreased the expression of upstream signals TLR4 and TRAF6 during LPS-induced osteoclastogenesis. Administration of artesunate (10 mg/kg, ip) for 8 days effectively inhibited serum TNF-α levels and ameliorated LPS (5 mg/kg, ip)-induced inflammatory bone loss in vivo. Taken together, artesunate attenuates LPS-induced inflammatory osteoclastogenesis by inhibiting the expression of TLR4/TRAF6 and the downstream PLCγ1-Ca2+-NFATc1 signaling pathway. Artesunate is a valuable choice to treat bone loss induced by gram-negative bacteria infection or inflammation in RANKL-independent pathway.


Assuntos
Antimaláricos/farmacologia , Artesunato/farmacologia , Inflamação/tratamento farmacológico , Osteoclastos/efeitos dos fármacos , Animais , Antimaláricos/administração & dosagem , Artesunato/administração & dosagem , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Feminino , Inflamação/patologia , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos ICR , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/citologia , Osteogênese/efeitos dos fármacos , Fosfolipase C gama/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 4 Toll-Like/metabolismo
17.
Acta Pharmacol Sin ; 41(5): 706-718, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31729469

RESUMO

Dengue fever is an acute infectious disease caused by dengue virus (DENV) and transmitted by Aedes mosquitoes. There is no effective vaccine or antiviral drug available to date to prevent or treat dengue disease. Recently, RNA-dependent RNA polymerase (RdRp), a class of polymerases involved in the synthesis of complementary RNA strands using single-stranded RNA, has been proposed as a promising drug target. Hence, we screened new molecules against DENV RdRp using our previously constructed virtual screening method. Mol-5, [1,2,4]triazolo[1,5-a]pyrimidine derivative, was screened out from an antiviral compound library (~8000 molecules). Using biophysical methods, we confirmed the direct interactions between mol-5 and purified DENV RdRp protein. In luciferase assay, mol-5 inhibited NS5-RdRp activity with an IC50 value of 1.28 ± 0.2 µM. In the cell-based cytopathic effect (CPE) assay, mol-5 inhibited DENV2 infectivity with an EC50 value of 4.5 ± 0.08 µM. Mol-5 also potently inhibited DENV2 RNA replication as observed in immunofluorescence assay and qRT-PCR. Both the viral structural (E) and non-structural (NS1) proteins of DENV2 were dose-dependently decreased by treatment with mol-5 (2.5-10 µM). Mol-5 treatment suppressed DENV2-induced inflammation in host cells, but had no direct effect on host defense (JAK/STAT-signaling pathway). These results demonstrate that mol-5 could be a novel RdRp inhibitor amenable for further research and development.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Inflamação/tratamento farmacológico , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cricetinae , Dengue/metabolismo , Dengue/virologia , Vírus da Dengue/enzimologia , Vírus da Dengue/metabolismo , Inflamação/metabolismo , Inflamação/virologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Pirimidinas/farmacologia , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície , Triazóis/farmacologia , Proteínas não Estruturais Virais/metabolismo
18.
Kidney Blood Press Res ; 44(5): 928-941, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31461707

RESUMO

BACKGROUND/AIMS: Several pathological classification systems were commonly used in clinical practice to predict the prognosis of IgA nephropathy (IgAN). However, how prognostic value differs between these systems is unclear. The aim of this study was to compare the Lee grade, the Oxford classification, and the Haas classification and to find a simplified classification. METHODS: We retrospectively analyzed IgAN cases diagnosed between January 2002 and December 2007. The endpoints were progression to end-stage renal disease (ESRD) or a ≥50% decline in estimated glomerular filtration rate (eGFR). The predictive capabilities were evaluated by comparing the ability of discrimination (continuous net reclassification) and calibration (Akaike information criterion [AIC]). RESULTS: A total of 412 IgAN patients were included in the study. The average follow-up period was 80.62 ± 23.63 months. A total of 44 (10.68%) patients progressed to ESRD, and 70 (16.99%) patients showed a ≥50% decline in eGFR. All multivariate Cox regression models had limited power for high AIC values. The prognostic values of the Lee grade and the Oxford classification were higher than those of models containing only established baseline clinical indicators for progression to ESRD or a ≥50% decline in eGFR (Lee grade 0.50, 95% CI 0.21-0.74; Oxford classification 0.48, 95% CI 0.28-0.71). The prognostic value of the Haas classification was lower than that of the other pathological classification systems for progression to ESRD or a ≥50% decline in eGFR (Lee grade 0.53, 95% CI 0.23-0.92; Oxford classification 0.59, 95% CI 0.10-0.74). The prognostic value of hierarchical classification (Beijing classification) using M and T lesion was similar to the Oxford classification. CONCLUSIONS: Both the Lee grade and the Oxford classification showed incremental prognostic values beyond established baseline clinical indicators. The Haas classification was slightly inferior to the Lee grade and the Oxford classification. The hierarchical classification (Beijing classification) using less pathological parameters does not lose predictive efficiency.


Assuntos
Glomerulonefrite por IGA/classificação , Glomerulonefrite por IGA/diagnóstico , Adulto , Pequim , Progressão da Doença , Feminino , Glomerulonefrite por IGA/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Adulto Jovem
19.
J Biol Chem ; 294(37): 13740-13754, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346035

RESUMO

Seminal amyloid fibrils are made up of naturally occurring peptide fragments and are key targets for the development of combination microbicides or antiviral drugs. Previously, we reported that the polysulfonic compound ADS-J1 is a potential candidate microbicide that not only inhibits HIV-1 entry, but also seminal fibrils. However, the carcinogenic azo moieties in ADS-J1 preclude its clinical application. Here, we screened several ADS-J1-like analogs and found that the antiparasitic drug suramin most potently inhibited seminal amyloid fibrils. Using various biochemical methods, including Congo red staining, CD analysis, transmission EM, viral infection assays, surface plasmon resonance imaging, and molecular dynamics simulations, we investigated suramin's inhibitory effects and its putative mechanism of action. We found that by forming a multivalent interaction, suramin binds to proteolytic peptides and mature fibrils, thereby inhibiting seminal fibril formation and blocking fibril-mediated enhancement of viral infection. Of note, suramin exhibited potent anti-HIV activities, and combining suramin with several antiretroviral drugs produced synergistic effects against HIV-1 in semen. Suramin also displayed a good safety profile for vaginal application. Moreover, suramin inhibited the semen-derived enhancer of viral infection (SEVI)/semen-mediated enhancement of HIV-1 transcytosis through genital epithelial cells and the subsequent infection of target cells. Collectively, suramin has great potential for further development as a combination microbicide to reduce the spread of the AIDS pandemic by targeting both viral and host factors involved in HIV-1 sexual transmission.


Assuntos
Amiloide/efeitos dos fármacos , Sêmen/efeitos dos fármacos , Suramina/farmacologia , Adulto , Animais , Fármacos Anti-HIV/farmacologia , Antirretrovirais/farmacologia , Infecções por HIV/metabolismo , HIV-1/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Fragmentos de Peptídeos/metabolismo , Peptídeos/metabolismo , Coelhos , Sêmen/metabolismo , Suramina/metabolismo
20.
Acta Pharmacol Sin ; 40(1): 98-110, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29789664

RESUMO

The persistence of latent HIV-1 reservoirs throughout combination antiretroviral therapy (cART) is a major barrier on the path to achieving a cure for AIDS. It has been shown that bromodomain and extra-terminal (BET) inhibitors could reactivate HIV-1 latency, but restrained from clinical application due to their toxicity and side effects. Thus, identifying a new type of BET inhibitor with high degrees of selectivity and safety is urgently needed. Apabetalone is a small-molecule selective BET inhibitor specific for second bromodomains, and has been evaluated in phase III clinical trials that enrolled patients with high-risk cardiovascular disorders, dyslipidemia, and low HDL cholesterol. In the current study, we examined the impact of apabetalone on HIV-1 latency. We showed that apabetalone (10-50 µmol/L) dose-dependently reactivated latent HIV-1 in 4 types of HIV-1 latency cells in vitro and in primary human CD4+ T cells ex vivo. In ACH2 cells, we further demonstrated that apabetalone activated latent HIV-1 through Tat-dependent P-TEFB pathway, i.e., dissociating bromodomain 4 (BDR4) from the HIV-1 promoter and recruiting Tat for stimulating HIV-1 elongation. Furthermore, we showed that apabetalone (10-30 µmol/L) caused dose-dependent cell cycle arrest at the G1/G0 phase in ACH2 cells, and thereby induced the preferential apoptosis of HIV-1 latent cells to promote the death of reactivated reservoir cells. Notably, cardiovascular diseases and low HDL cholesterol are known as the major side effects of cART, which should be prevented by apabetalone. In conclusion, apabetalone should be an ideal bifunctional latency-reversing agent for advancing HIV-1 eradication and reducing the side effects of BET inhibitors.


Assuntos
Fármacos Anti-HIV/farmacologia , Apoptose/efeitos dos fármacos , HIV-1/fisiologia , Quinazolinonas/farmacologia , Latência Viral/efeitos dos fármacos , Linhagem Celular Tumoral , DNA/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Fator B de Elongação Transcricional Positiva/metabolismo , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...