Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2402339, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804860

RESUMO

High voltage cobalt-free spinel LiNi0.5Mn1.5O4 (LNMO) is well organized as a high-power cathode material for lithium (Li)-ion batteries, however, the weak interaction between the 3d orbital of the transition metal (TM) ions and the 2p orbital of oxygen (O) leads to the instability of crystal structural, hindering the long-term stable cycling of LNMO cathode especially at high temperatures. Here, a design strategy of orbital interaction is initiated to strengthen TM 3d-O 2p framework in P-doped LNMO (P-LNMO) by choosing phytic acid as P dopant, which can realize more uniform doping compared to regular phosphate. The results show that the enhancement of TM 3d-O 2p orbital interaction in P-LNMO can suppress the Jahn-Teller effect and subsequent dissolution of Mn, as well as lowers the energy barrier for Li ion insertion/extraction kinetics. As a result, superior electrochemical performances including high discharge capacity, stable cycling behavior and enhanced rate capability of P-LNMO are obtained. Significantly, the P-LNMO pouch cell shows great cycling stability with 97.4% capacity retention after 100 cycles.

2.
ACS Nano ; 13(10): 12137-12147, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31593436

RESUMO

Rationally constructing inexpensive sulfur hosts that have high electronic conductivity, large void space for sulfur, strong chemisorption, and rapid redox kinetics to polysulfides is critically important for their practical use in lithium-sulfur (Li-S) batteries. Herein, we have designed a multifunctional sulfur host based on yolk-shelled Fe2N@C nanoboxes (Fe2N@C NBs) through a strategy of etching combined with nitridation for high-rate and ultralong Li-S batteries. The highly conductive carbon shell physically confines the active material and provides efficient pathways for fast electron/ion transport. Meanwhile, the polar Fe2N core provides strong chemical bonding and effective catalytic activity for polysulfides, which is proved by density functional theory calculations and electrochemical analysis techniques. Benefiting from these merits, the S/Fe2N@C NBs electrode with a high sulfur content manifests a high specific capacity, superior rate capability, and long-term cycling stability. Specifically, even after 600 cycles at 1 C, a capacity of 881 mAh g-1 with an average fading rate of only 0.036% can be retained, which is among the best cycling performances reported. The strategy in this study provides an approach to the design and construction of yolk-shelled iron-based compounds@carbon nanoarchitectures as inexpensive and efficient sulfur hosts for realizing practically usable Li-S batteries.

3.
Nanoscale ; 10(47): 22601-22611, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30480697

RESUMO

Constructing an interlinked three-dimensional conductive carbon structure as a sulfur host is considered to be an effective strategy for suppressing the capacity decay over long-term cycling and improving the rate performance of lithium-sulfur (Li-S) batteries, because it can not only facilitate rapid electronic and ionic transportation in the cathode, but also be conducive to confine lithium polysulfide (LiPS) dissolution and shuttling. In this report, we designed a novel 3D conductive network structure (CNTs/Co-NC), which is composed of Co-NC (cobalt embedded in an N-doped porous carbon composite) derived from ZIF-67 polyhedra and inserted carbon nanotubes (CNTs), and applied it as a sulfur host for Li-S batteries. The CNT/Co-NC network structure is firstly prepared via the in situ nucleation of small ZIF-67 crystals on the surface of CNTs and eventually grown into CNT/ZIF-67 hybrid materials; after subsequent carbonization and infiltration of sulfur procedures, the S@CNT/Co-NC cathode is obtained. Li-S batteries based on the S@CNT/Co-NC cathode show an improved rate capability of 772.6 mA h g-1 at the 2 C rate, enhanced long cycling stability under a large current density with a low capacity decay rate of ∼0.067% per cycle at the 0.5 C rate after 500 cycles and ∼0.072% per cycle at the 1 C rate after 700 cycles and an excellent coulombic efficiency of about 95% up to 500 cycles at 0.5 C and 91% up to 700 cycles at 1 C. The superior performance of S@CNTs/Co-NC should be ascribed to the rapid charge transfer, excellent electron conductivity, improved adsorption capability for LiPSs and enhanced redox kinetics of this 3D conductive network structure.

4.
ACS Appl Mater Interfaces ; 9(48): 41837-41844, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29131566

RESUMO

Inorganic solid electrolytes (SEs) possess substantial safety and electrochemical stability, which make them as key components of safe rechargeable solid-state Li batteries with high energy density. However, complicated integrally molding process and poor wettability between SEs and active materials are the most challenging barriers for the application of SEs. In this regard, we explore composite SEs of the active ceramic Li1+xAlxGe2-x(PO4)3 (LAGP) as the main medium for ion conduction and the polymer P(VDF-HFP) as a matrix. Meanwhile, for the first time, we choice high chemical, thermal, and electrochemical stability of ionic liquid swelled in polymer, which significantly ameliorate the interface in the cell. In addition, a reduced crystallinity degree of the polymer in the electrolyte can also be achieved. All of these lead to good ionic conductivity of the composite electrolyte (LPELCE), at the same time, good compatibility with the lithium electrode. Especially, high mechanical strength and stable solid electrolyte interphase which suppressed the growth of lithium dendrites and high thermal safety stability can also be observed. For further illustration, the solid-state lithium battery of LiFePO4/LPELCE/Li shows relatively satisfactory performance, indicating the promising potentials of using this type of electrolyte to develop high safety and high energy density solid-state lithium batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...