Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Front Psychol ; 15: 1367308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716276

RESUMO

Purpose: The family residence structure serves as a crucial pathway through which the family environment influences adolescents' development. Methods: Drawing on nationally representative data, this study employs multiple linear regression models and propensity score matching to examine the impact of various family residence structures on adolescents' non-cognitive abilities. Causal identification is achieved through propensity score matching, while robustness is assessed using methods such as augmented inverse probability weighting and placebo tests. Heterogeneity analysis is conducted based on gender and household registration, aiming to explore the mechanisms by which family residence structure affects adolescents' non-cognitive abilities. Results: The findings indicate that compared to two-parent co-residence households, three-generation co-residence families have significantly positive effects on emotional stability, conscientiousness, and agreeableness among adolescents. In contrast, skip-generation coresidence families exhibit significant negative effects on emotional stability and agreeableness in adolescents. Further investigation into the underlying mechanisms reveals that parental involvement and family socioeconomic status within three-generation co-residence families positively influence adolescents' non-cognitive abilities. Conclusion: This study highlights the importance of considering grandparents' role in adolescent growth and advocates for policy recommendations focusing on enhancing non-cognitive abilities in adolescents from skip-generation co-residence families.

2.
GM Crops Food ; 15(1): 118-129, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38564429

RESUMO

Soybean is one of the important oil crops and a major source of protein and lipids. Drought can cause severe soybean yields. Dehydrin protein (DHN) is a subfamily of LEA proteins that play an important role in plant responses to abiotic stresses. In this study, the soybean GmDHN9 gene was cloned and induced under a variety of abiotic stresses. Results showed that the GmDHN9 gene response was more pronounced under drought induction. Subcellular localization results indicated that the protein was localized in the cytoplasm. The role of transgenic Arabidopsis plants in drought stress response was further studied. Under drought stress, the germination rate, root length, chlorophyll, proline, relative water content, and antioxidant enzyme content of transgenic Arabidopsis thaliana transgenic genes were higher than those of wild-type plants, and transgenic plants contained less O2-, H2O2 and MDA contents. In short, the GmDHN9 gene can regulate the homeostasis of ROS and enhance the drought resistance of plants.


Assuntos
Arabidopsis , Arabidopsis/genética , Resistência à Seca , Glycine max/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Fisiológico/genética , Secas , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Environ Res ; 252(Pt 2): 118855, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588909

RESUMO

Positive matrix factorization (PMF) has commonly been applied for source apportionment of potentially toxic elements (PTE) in agricultural soil, however, spatial heterogeneity of PTE significantly undermines the accuracy and reliability of PMF results. In this study, a representative industrial-agricultural hub in North China (Xuanhua district, Zhangjiakou City) was selected as the research subject, multiple partition processing (PP) strategies and uncertainty analyses were integrated to advance the PMF modeling and associated algorithm mechanisms were comparatively discussed. Specifically, we adopted three methods to split the research area into several subzones according to industrial density (PP-1), population density (PP-2), and the ecological risk index (PP-3) respectively, to rectify the spatial bias phenomenon of PTE concentrations and to achieve a more interpretable result. Our results indicated that the obvious enrichment of Cd, Pb, and Zn was found in the agricultural soil, with Hg and Cd accounted for 83.49% of the overall potential ecological risk. Combining proper PP with PMF can significantly improve the modelling accuracy. Uncertainty analysis showed that interval ratios of tracer species (Cd, Pb, Hg, and Zn) calculated by PP-3 were consistently lower than that of PP-1 and PP-2, indicating that PP-3 coupled PMF can afford the optimal modeling results. It suggested that natural sources, fertilizers and pesticides, atmosphere deposition, mining, and smelting were recognized as the major contributor for the soil PTE contamination. The contribution of anthropogenic activities, specifically fertilizers and pesticides, and atmosphere deposition, increased by 1.64% and 5.91% compared to PMF results. These findings demonstrate that integration of proper partitioning processing into PMF can effectively improve the accuracy of the model even at the case of soil PTE contamination with high heterogeneity, offering support to subsequently implement directional control strategies.

4.
Heliyon ; 10(5): e27175, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38468967

RESUMO

Graves' disease (GD) is an autoimmune disorder characterized by hyperthyroidism resulting from autoantibody-induced stimulation of the thyroid gland. Despite recent advancements in understanding GD's pathogenesis, the molecular processes driving disease progression and treatment response remain poorly understood. In this study, we aimed to identify crucial immunogenic factors associated with GD prognosis and immunotherapeutic response. To achieve this, we implemented a comprehensive screening strategy that combined computational immunogenicity-potential scoring with multi-parametric cluster analysis to assess the immunomodulatory genes in GD-related subtypes involving stromal and immune cells. Utilizing weighted gene co-expression network analysis (WGCNA), we identified co-expressed gene modules linked to cellular senescence and immune infiltration in CD4+ and CD8+ GD samples. Additionally, gene set enrichment analysis enabled the identification of hallmark pathways distinguishing high- and low-immune subtypes. Our WGCNA analysis revealed 21 gene co-expression modules comprising 1,541 genes associated with immune infiltration components in various stages of GD, including T cells, M1 and M2 macrophages, NK cells, and Tregs. These genes primarily participated in T cell proliferation through purinergic signaling pathways, particularly neuroactive ligand-receptor interactions, and DNA binding transcription factor activity. Three genes, namely PRSS1, HCRTR1, and P2RY4, exhibited robustness in GD patients across multiple stages and were involved in immune cell infiltration during the late stage of GD (p < 0.05). Importantly, HCRTR1 and P2RY4 emerged as potential prognostic signatures for predicting overall survival in high-immunocore GD patients (p < 0.05). Overall, our study provides novel insights into the molecular mechanisms driving GD progression and highlights potential key immunogens for further investigation. These findings underscore the significance of immune infiltration-related cellular senescence in GD therapy and present promising targets for the development of new immunotherapeutic strategies.

5.
GM Crops Food ; 15(1): 105-117, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38466176

RESUMO

Maize (Zea mays L.) is the most important cereal crop in the world. Flowering period and photoperiod play important roles in the reproductive development of maize. This study, investigated ZmMADS42, a gene that is highly expressed in the shoot apical meristem. Agrobacterium infection was used to successfully obtain overexpressed ZmMADS42 plants. Fluorescence quantitative PCR revealed that the expression of the ZmMADS42 gene in the shoot apical meristem of transgenic plants was 2.8 times higher than that of the wild-type(WT). In addition, the expression of the ZmMADS42 gene in the endosperm was 2.4 times higher than that in the wild-type. The seed width of the T2 generation increased by 5.35%, whereas the seed length decreased by 7.78% compared with that of the wild-type. Dissection of the shoot tips of transgenic and wild-type plants from the 7-leaf stage to the 9-leaf stage revealed that the transgenic plants entered the differentiation stage earlier and exhibited more tassel meristems during their vegetative growth period. The mature transgenic plants were approximately 20 cm shorter in height and had a lower panicle position than the wild-type plants. Comparing the flowering period, the tasseling, powdering, and silking stages of the transgenic plants occurred 10 days earlier than those of the wild-type plants. The results showed that the ZmMADS42 gene played a significant role in regulating the flowering period and plant height of maize.


Assuntos
Agrobacterium , Zea mays , Zea mays/genética , Plantas Geneticamente Modificadas , Dissecação , Clonagem Molecular
6.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279328

RESUMO

Strigolactones (SLs) represent a recently identified class of plant hormones that are crucial for plant tillering and mycorrhizal symbiosis. The D14 gene, an essential receptor within the SLs signaling pathway, has been well-examined in crops, like rice (Oryza sativa L.) and Arabidopsis (Arabidopsis thaliana L.), yet the research on its influence in maize (Zea mays L.) remains scarce. This study successfully clones and establishes Arabidopsis D14 gene overexpression lines (OE lines). When compared with the wild type (WT), the OE lines exhibited significantly longer primary roots during germination. By seven weeks of age, these lines showed reductions in plant height and tillering, alongside slight decreases in rosette and leaf sizes, coupled with early aging symptoms. Fluorescence-based quantitative assays indicated notable hormonal fluctuations in OE lines versus the WT, implying that D14 overexpression disrupts plant hormonal homeostasis. The OE lines, exposed to cold, drought, and sodium chloride stressors during germination, displayed an especially pronounced resistance to drought. The drought resistance of OE lines, as evident from dehydration-rehydration assays, outmatched that of the WT lines. Additionally, under drought conditions, the OE lines accumulated less reactive oxygen species (ROS) as revealed by the assessment of the related physiological and biochemical parameters. Upon confronting the pathogens Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), post-infection, fluorescence quantitative investigations showed a significant boost in the salicylic acid (SA)-related gene expression in OE lines compared to their WT counterparts. Overall, our findings designate the SL receptor D14 as a key upregulator of drought tolerance and a regulator in the biotic stress response, thereby advancing our understanding of the maize SL signaling pathway by elucidating the function of the pivotal D14 gene.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Compostos Heterocíclicos com 3 Anéis , Lactonas , Arabidopsis/metabolismo , Zea mays/genética , Zea mays/metabolismo , Resistência à Seca , Proteínas de Arabidopsis/genética , Secas , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
J Hazard Mater ; 465: 133508, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38228009

RESUMO

Although phenanthroline diamide ligands have been widely reported, their limited solubility in organic solvents and poor performance in the separation of trivalent actinides (An(III)) and lanthanides (Ln(III)) at high acidity are still clear demerits. In this study, we designed and synthesized three highly soluble phenanthroline diamide ligands with different side chains. By introducing alkyl chains and ester groups, the ligands solubility in 3-nitrotrifluorotoluene is increased to over 600 mmol/L, significantly higher than the previous reported phenanthroline diamide ligands. Based on anomalous aryl strengthening, benzene ring was incorporated to enhance ligand selectivity toward Am(III). Extraction experiments demonstrated favorable selectivity of all the three ligands towards Am(III). The optimal separation factor (SFAm/Eu) reaches 53 at 4 mol/L HNO3, representing one of the most effective separation of An(III) over Ln(III) under high acidity. Slope analysis, single crystal structure analysis, as well as titration of ultraviolet visible spectroscopy, mass spectrometry, and nuclear magnetic resonanc confirmed the formation of 1:1 and 1:2 complex species between the metal ions and the ligands depending on the molar ratio of metal ions in the reaction mixture. The findings of this study offer valuable insights for developing phenanthroline diamide ligands for An(III)/Ln(III) separation.

8.
Cont Lens Anterior Eye ; 47(1): 102101, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092625

RESUMO

OBJECTIVE: This study aims to reveal the factors influencing the selection of the dominant eye in refractive surgery patients, and enhance the accuracy of clinical evaluation and surgical treatment. METHODS: A retrospective study method was employed. The ocular biometric parameters were analyzed in 4,114 patients who underwent refractive surgery at the affiliated hospital of Southwest Medical University from 2019 to 2023. RESULTS: The study found that 79.07% of the patients had the right eye as the dominant eye, while 20.93% had the left eye. Although there was no significant difference between the dominant and non-dominant eyes in terms of uncorrected visual acuity and Kappa angle, the dominant eye performed better in aspects such as spherical lens, eye axis, and corneal flat curvature. Furthermore, univariate and multivariate logistic regression results showed that best-corrected visual acuity, pupil diameter, horizontal displacement x-value of the Kappa angle, and astigmatism vector J45 were significant influencing factors for the selection of the dominant eye. CONCLUSION: There are numerous factors affecting the dominant eye, and the most important core factor is J45. This study comprehensively evaluated the possible factors affecting the dominant eye in patients undergoing refractive surgery, which provides a foundation for the designation of refractive surgical modalities and assurance of surgical outcomes, and opens up new perspectives on understanding the mechanisms of the formation and development of the dominant eye.


Assuntos
Astigmatismo , Procedimentos Cirúrgicos Refrativos , Humanos , Refração Ocular , Estudos Retrospectivos , Acuidade Visual , Astigmatismo/cirurgia
9.
Int J Biol Macromol ; 258(Pt 1): 128849, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113999

RESUMO

Maize is the largest crop in the world in terms of both planting area and total yield, and it plays a crucial role in ensuring global food and feed security. However, in recent years, with climate deterioration, environmental changes, and the scarcity of freshwater resources, drought has become a serious limiting factor for maize yield and quality. Drought stress-induced signals undergo a series of transmission processes to regulate the expression of specific genes, thereby affecting the drought tolerance of plants at the tissue, cellular, physiological and biochemical levels. Therefore, in this study we investigated the HD-Zip transcription factor gene Zmhdz9, and yeast activation experiments demonstrated that Zmhdz9 exhibited transcriptional activation activity. Under drought stress, high abscisic acid (ABA) and lignin levels significantly improved drought resistance in maize. Yeast two-hybrid, bimolecular fluorescence complementation (BIFC) and pull-down experiments showed that Zmhdz9 interacted with ZmWRKY120 and ZmTCP9, respectively. Overexpression of Zmhdz9 and gene editing of ZmWRKY120 or ZmTCP9 improved maize drought resistance, indicating their importance in the drought stress response. Furthermore, Zmhdz9 promoted the direct transcription of ZmWRKY120 in the W-box, activating elements of the ZmNCED1 promoter, which encodes a key enzyme in ABA biosynthesis. Additionally, Zmhdz9 promoted direct transcription of ZmTCP9 in the GGTCA motif, activating elements of the ZmKNOX8 promoter, which encodes a key enzyme in lignin synthesis. This study showed that the regulation of ABA and lignin by Zmhdz9 is essential for drought stress resistance in maize.


Assuntos
Ácido Abscísico , Fatores de Transcrição , Ácido Abscísico/metabolismo , Fatores de Transcrição/genética , Resistência à Seca , Zea mays/metabolismo , Lignina/metabolismo , Secas , Saccharomyces cerevisiae/metabolismo , Proteínas de Plantas/química , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/metabolismo
10.
Environ Res ; 245: 118017, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157965

RESUMO

As the largest beer producer and consumer in the world, China's endeavors to reduce solid waste generation (SWG) and carbon emissions (CEs) in the course of beer production assume paramount significance. This study aims to assess the SWG and CEs in beer production within China at both national and provincial levels, and further delves into the spatial distribution characteristics and evolving patterns across the country. Key findings of the study include:(1) Peak SWG and CEs were recorded in 2013, reaching 861.62 million tons and 2315.10 tCO2e, respectively, followed by a consistent decline. (2) Among the three types of solid waste, spent grain exhibited the highest generation rate, contributing to 94.38% of the total. (3) The emergence of China's beer industry dates back to the 1980s in the northeastern region, expanding to the southeastern and the Yangtze River Basin during the 1990s, ultimately extending nationwide. (4) The spatial distribution of beer production revealed significant regional disparities and notable industry concentration. Notably, many provinces witnessed reduced CEs from beer production starting in 2015, although the extent of reduction varied in different provinces. These findings serve as a scientific foundation for formulating emission reduction strategies in beer producing and offer insights for other food industries in China.


Assuntos
Carbono , Resíduos Sólidos , Resíduos Sólidos/análise , Carbono/análise , Cerveja/análise , Indústrias , China , Dióxido de Carbono/análise , Desenvolvimento Econômico
11.
Psychol Health Med ; : 1-14, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053313

RESUMO

This study aimed to identify group variations in adolescent impulsivity and explore the connections between latent categories of impulsivity and psychological symptoms, social anxiety, and internet addiction. The research involved 2,378 participants from three middle schools in Guangdong Province, China. We assessed the impact of impulsivity levels (measured by BBIS) on depression (measured by KADS-11), anxiety (measured by SCARED), social anxiety (measured by SASC), and internet addiction (measured by YDQ). Latent profile analysis was employed to examine the diversity in adolescent impulsivity, establish latent classifications, and investigate the variances in psychological symptoms, social anxiety, and internet addiction. The middle school students were categorized into five latent groups based on their BBIS scores. Statistical analysis revealed five impulsivity categories, strongly linked to psychological symptoms and social anxiety but less strongly associated with internet addiction. The high impulsivity group (C5) exhibited higher scores in psychological symptoms and social anxiety compared to other groups, whereas the poor self-regulation group (C3) displayed greater psychological symptoms, social anxiety scores, and internet addiction than the impulsive behavior group (C4). Future investigations should investigate the underlying factors contributing to the observed differences among these groups.

12.
Microb Pathog ; 185: 106455, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37995881

RESUMO

Maize is an important food crop in the world, but the yield and quality of maize have been significantly reduced due to the impact of insect pests. In order to address this issue, the cry1Ah gene was subjected to error-prone PCR for mutagenesis, and subsequently, the mutant cry1Ah-1 gene was introduced into maize inbred line GSH9901 callus using the Agrobacterium-mediated method. The T2 generation transformed plants were obtained by subculture, and 9 transgenic positive plants were obtained by molecular detection which was carried out by PCR, qRT-PCR, Bt gold-labeled immunoassay test strips, Western blot and ELISA. It was found that the Cry1Ah-1 gene could be transcribed normally in maize leaves, of which OE1 and OE3 had higher relative expression levels and could successfully express proteins of 71.94 KD size. They were expressed in different tissues at the 6-leaf stage, heading stage and grain-filling stage, and could ensure the protection of maize from corn borer throughout the growth period. The biological activities of OE1 and OE3 were tested indoors and in the field, and the results showed that in indoors, the corn borer that fed on OE1 and OE3 corn leaves had a mortality rate of 100 % after 3 days; in the field, OE1 and OE3 had strong insecticidal activity against corn borer, reaching a high resistance level. In conclusion, the transgenic cry1Ah-1 maize has a strong insecticidal effect on corn borer, and has a good prospect of commercialization.


Assuntos
Bacillus thuringiensis , Inseticidas , Mariposas , Animais , Endotoxinas/genética , Endotoxinas/metabolismo , Zea mays/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Inseticidas/metabolismo , Plantas Geneticamente Modificadas/genética , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Controle Biológico de Vetores
13.
Oral Dis ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37927000

RESUMO

OBJECTIVE: To evaluate the regulatory role of neutrophils as the first line of host immune defense in the periodontal microenvironment of mice. METHODS: A systematic search was performed using PubMed, Web of Science, and ScienceDirect databases for articles published between 2012 and 2023. In this review, articles investigating the effect of neutrophils on alveolar bone resorption in a mouse model of periodontitis were selected and evaluated according to eligibility criteria. Important variables that may influence outcomes were analyzed. RESULTS: Eleven articles were included in this systematic review. The results showed that because of their immune defense functions, the functional homeostasis of local neutrophils is critical for periodontal health. Neutrophil deficiency aggravates alveolar bone loss. However, several studies have shown that excessive neutrophil infiltration is positively correlated with alveolar bone resorption caused by periodontitis in mice. Therefore, the homeostasis of neutrophil function needs to be considered in the treatment of periodontitis. CONCLUSIONS: Pooled analysis suggests that neutrophils play a bidirectional role in periodontal tissue remodeling in mouse periodontitis models. Therefore, targeted regulation of local neutrophil function provides a novel strategy for the treatment of periodontitis.

14.
Plants (Basel) ; 12(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570962

RESUMO

The toxicity of aluminum (Al) in acidic soils poses a significant limitation to crop productivity. In this study, we found a notable increase in DnaJ (HSP40) expression in the roots of Al-tolerant alfalfa (WL-525HQ), which we named MsDjB4. Transient conversion assays of tobacco leaf epidermal cells showed that MsDjB4 was targeted to the membrane system including Endoplasmic Reticulum (ER), Golgi, and plasma membrane. We overexpressed (MsDjB4-OE) and suppressed (MsDjB4-RNAi) MsDjB4 in alfalfa hairy roots and found that MsDjB4-OE lines exhibited significantly better tolerance to Al stress compared to wild-type and RNAi hairy roots. Specifically, MsDjB4-OE lines had longer root length, more lateral roots, and lower Al content compared to wild-type and RNAi lines. Furthermore, MsDjB4-OE lines showed lower levels of lipid peroxidation and ROS, as well as higher activity of antioxidant enzymes SOD, CAT, and POD compared to wild-type and RNAi lines under Al stress. Moreover, MsDjB4-OE lines had higher soluble protein content compared to wild-type and RNAi lines after Al treatment. These findings provide evidence that MsDjB4 contributes to the improved tolerance of alfalfa to Al stress by facilitating protein synthesis and enhancing antioxidant capacity.

15.
ACS Omega ; 8(15): 13649-13669, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37091418

RESUMO

In this paper, we propose a modeling framework for pore-scale fluid flow and reactive transport based on a coupled lattice Boltzmann model (LBM). We develop a modeling interface to integrate the LBM modeling code parallel lattice Boltzmann solver and the PHREEQC reaction solver using multiple flow and reaction cell mapping schemes. The major advantage of the proposed workflow is the high modeling flexibility obtained by coupling the geochemical model with the LBM fluid flow model. Consequently, the model is capable of executing one or more complex reactions within desired cells while preserving the high data communication efficiency between the two codes. Meanwhile, the developed mapping mechanism enables the flow, diffusion, and reactions in complex pore-scale geometries. We validate the coupled code in a series of benchmark numerical experiments, including 2D single-phase Poiseuille flow and diffusion, 2D reactive transport with calcite dissolution, as well as surface complexation reactions. The simulation results show good agreement with analytical solutions, experimental data, and multiple other simulation codes. In addition, we design an AI-based optimization workflow and implement it on the surface complexation model to enable increased capacity of the coupled modeling framework. Compared to the manual tuning results proposed in the literature, our workflow demonstrates fast and reliable model optimization results without incorporating pre-existing domain knowledge.

16.
Cell Prolif ; 56(7): e13428, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36872292

RESUMO

Appropriate responses to inflammation are conducive to pathogen elimination and tissue repair, while uncontrolled inflammatory reactions are likely to result in the damage of tissues. Chemokine (CC-motif) Ligand 2 (CCL2) is the main chemokine and activator of monocytes, macrophages, and neutrophils. CCL2 played a key role in amplifying and accelerating the inflammatory cascade and is closely related to chronic non-controllable inflammation (cirrhosis, neuropathic pain, insulin resistance, atherosclerosis, deforming arthritis, ischemic injury, cancer, etc.). The crucial regulatory roles of CCL2 may provide potential targets for the treatment of inflammatory diseases. Therefore, we presented a review of the regulatory mechanisms of CCL2. Gene expression is largely affected by the state of chromatin. Different epigenetic modifications, including DNA methylation, post-translational modification of histones, histone variants, ATP-dependent chromatin remodelling, and non-coding RNA, could affect the 'open' or 'closed' state of DNA, and then significantly affect the expression of target genes. Since most epigenetic modifications are proven to be reversible, targeting the epigenetic mechanisms of CCL2 is expected to be a promising therapeutic strategy for inflammatory diseases. This review focuses on the epigenetic regulation of CCL2 in inflammatory diseases.


Assuntos
Quimiocina CCL2 , Epigênese Genética , Humanos , Quimiocina CCL2/metabolismo , Ligantes , Quimiocinas/genética , Quimiocinas/metabolismo , Inflamação/genética
17.
Molecules ; 28(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36903633

RESUMO

Advancements in inexpensive, efficient, and durable oxygen reduction catalysts is important for maintaining the sustainable development of fuel cells. Although doping carbon materials with transition metals or heteroatomic doping is inexpensive and enhances the electrocatalytic performance of the catalyst, because the charge distribution on its surface is adjusted, the development of a simple method for the synthesis of doped carbon materials remains challenging. Here, a non-precious-metal tris (Fe/N/F)-doped particulate porous carbon material (21P2-Fe1-850) was synthesized by employing a one-step process, using 2-methylimidazole, polytetrafluoroethylene, and FeCl3 as raw materials. The synthesized catalyst exhibited a good oxygen reduction reaction performance with a half-wave potential of 0.85 V in an alkaline medium (compared with 0.84 V of commercial Pt/C). Moreover, it had better stability and methanol resistance than Pt/C. This was mainly attributed to the effect of the tris (Fe/N/F)-doped carbon material on the morphology and chemical composition of the catalyst, thereby enhancing the catalyst's oxygen reduction reaction properties. This work provides a versatile method for the gentle and rapid synthesis of highly electronegative heteroatoms and transition metal co-doped carbon materials.

18.
Environ Res ; 216(Pt 1): 114533, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36241074

RESUMO

Biochemical oxygen demand (BOD) is an important biochemical indicator for determining the degree of water pollution and guiding the design of wastewater treatment processes. BOD sensors based on microbial electrochemical technology can conduct real-time online monitoring of organic matter and have attracted extensive attention. However, research on microbial electrolytic cell (MEC)-type BOD sensors is at the stage of theoretical exploration. Here, we designed and optimized a highly sensitive MEC-type BOD sensor by screening inoculants, comparing electrode materials, and optimizing the reactor configuration. The results showed that effective means to optimize a BOD sensor for fast activation and sensitive testing included the inoculation of the MEC reactor effluent with large amounts of biomass and highly active bacteria, selection of carbon felt electrodes with excellent adsorption and permeability, miniaturization of the reactor, regulation of suitable electrode spacing, and design of the penetrating fluid structure. Then, the optimized sensing system was applied to determine the BOD concentration in model solutions of sodium acetate in a laboratory environment, where it accurately measured BOD concentrations in the range of 10-500 mg/L and maintained good parallelism during long-term operation. Next, the MEC-type BOD sensors were put into practice in the field as an alarm for accidents at an actual sewage plant. The whole BOD sensing system was quickly assembled on site and started up, and it gave an early warning shortly after the concentration of organic matter in the water suddenly increased, thus showing a high potential for engineering applications. This study broadened the domains of application of MEC-type BOD sensors in environmental monitoring, and promoted the development of technological innovation in water ecology and environmental monitoring.


Assuntos
Técnicas Biossensoriais , Purificação da Água , Esgotos/química , Técnicas Biossensoriais/métodos , Eletrodos , Água , Oxigênio/análise
19.
Cranio ; 41(3): 264-273, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-33044909

RESUMO

OBJECTIVE: This systematic review and meta-analysis aimed to compare outcomes between ultrasound (US)-guided arthrocentesis and conventional arthrocentesis for the management of temporomandibular joint disorders (TMDs). METHODS: PubMed, Embase, Scopus, BioMed Central, CENTRAL, and Google scholar databases were searched up to April 1 2020 for randomized control trials (RCTs) comparing US-guided and conventional arthrocentesis. RESULTS: Four RCTs were included. Pooled analysis did not demonstrate any statistically significant difference in pain or maximal mouth opening (MMO) scores after 1 week and 1 month of follow-up between US-guided and conventional arthrocentesis. Studies also reported data on intra-operative needle relocations and operating time but with conflicting results. CONCLUSION: This study indicates that the use of US during arthrocentesis may not improve postoperative pain and MMO in the short term. Data on intra-operative outcomes are scarce and conflicting for any definitive conclusions. Further high-quality adequately powered RCTs are required to strengthen current evidence.


Assuntos
Artrocentese , Transtornos da Articulação Temporomandibular , Humanos , Artrocentese/métodos , Articulação Temporomandibular , Resultado do Tratamento , Transtornos da Articulação Temporomandibular/diagnóstico por imagem , Transtornos da Articulação Temporomandibular/cirurgia , Ultrassonografia de Intervenção , Amplitude de Movimento Articular
20.
Biol Trace Elem Res ; 201(2): 627-635, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35305538

RESUMO

The relationship between trace elements and neurological development is an emerging research focus. We performed a case-control study to explore (1) the differences of 13 trace elements chromium (Cr), manganese (Mn), cobalt (Co), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), cadmium (Cd), stannum (Sn), stibium (Sb), mercury (Hg), titanium (TI), and plumbum (Pb) concentration in whole blood and urine between autism spectrum disorder (ASD) children and their typical development peers, and (2) the association between the 13 trace elements and core behaviors of ASD. Thirty ASD subjects (cases) and 30 age-sex-matched healthy subjects from Baise City, Guangxi Zhuang Autonomous Region, China, were recruited. Element analysis was carried out by inductively coupled plasma-optical emission spectrometry. Autistic behaviors were assessed using Autism Behavior Checklist (ABC), Childhood Autism Rating Scale (CARS), and Children Neuropsychological and Behavior Scale (CNBS). The whole blood concentrations of Mo (p = 0.004), Cd (0.007), Sn (p = 0.003), and Pb (p = 0.037) were significantly higher in the ASD cases than in the controls. Moreover, Se (0.393), Hg (0.408), and Mn (- 0.373) concentrations were significantly correlated between whole blood and urine levels in ASD case subjects. There were significant correlations between whole blood Sb (0.406), Tl (0.365), Mo (- 0.4237), Mn (- 0.389), Zn (0.476), and Se (0.375) levels and core behaviors of ASD. Although the mechanism of trace element imbalance in ASD is unclear, these data demonstrate that core behaviors of ASD may be affected by certain trace elements. Further studies are recommended for exploring the mechanism of element imbalance and providing corresponding clinical treatment measures.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Mercúrio , Selênio , Oligoelementos , Humanos , Criança , Oligoelementos/análise , Cádmio/análise , Estudos de Casos e Controles , Chumbo/análise , China , Selênio/análise , Manganês/análise , Molibdênio/análise , Estanho/análise , Mercúrio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...