Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(13): 6960-6991, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38836431

RESUMO

The past few decades have witnessed encouraging progress in the development of high-performance film-based fluorescent sensors (FFSs) for detecting explosives, illicit drugs, chemical warfare agents (CWAs), and hazardous volatile organic chemicals (VOCs), among others. Several FFSs have transitioned from laboratory research to real-world applications, demonstrating their practical relevance. At the heart of FFS technology lies the sensing films, which play a crucial role in determining the analytes and the resulting signals. The selection of sensing fluorophores and the fabrication strategies employed in film construction are key factors that influence the fluorescence properties, active-layer structures, and overall sensing behaviors of these films. This review examines the progress and innovations in the research field of FFSs over the past two decades, focusing on advancements in fluorophore design and active-layer structural engineering. It underscores popular sensing fluorophore scaffolds and the dynamics of excited state processes. Additionally, it delves into six distinct categories of film fabrication technologies and strategies, providing insights into their advantages and limitations. This review further addresses important considerations such as photostability and substrate effects. Concluding with an overview of the field's challenges and prospects, it sheds light on the potential for further development in this burgeoning area.

2.
J Mater Chem B ; 12(22): 5350-5359, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38738315

RESUMO

An organelle-selective vision provides insights into the physiological response of plants and crops to environmental stresses in sustainable agriculture ecosystems. Biological applications often require two-photon excited fluorophores with low phototoxicity, high brightness, deep penetration, and tuneable cell entry. We obtained three aniline-based squaraines (SQs) tuned from hydrophobic to hydrophilic characteristics by modifying terminal pendant groups and substituents, and investigated their steady-state absorption and far-red-emitting fluorescence properties. The SQs exhibited two-photon absorption (2PA) ranging from 750 to 870 nm within the first biological spectral window; their structure-property relationships, corresponding to the 2PA cross sections (δ2PA), and structure differences were demonstrated. The maximum δ2PA value was ∼1220 GM at 800 nm for hydrophilic SQ3. Distinct biological staining efficiency and selective SQ bioimaging were evaluated utilizing the onion epidermal cell model. Contrary to the hydrophobic SQ1 results in the onion epidermal cell wall, amphiphilic SQ2 tagged the vacuole and nucleus and SQ3 tagged the vacuole. Distinguishable staining profiles in the roots and leaves were achieved. We believe that this study is the first to demonstrate distinct visualisation efficiency induced by the structure differences of two-photon excited SQs. Our results can help establish the versatile roles of novel near-infrared-emitting SQs in biological applications.


Assuntos
Compostos de Anilina , Ciclobutanos , Corantes Fluorescentes , Cebolas , Fenóis , Relação Estrutura-Atividade , Compostos de Anilina/química , Compostos de Anilina/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Cebolas/química , Fenóis/química , Fenóis/farmacologia , Ciclobutanos/química , Ciclobutanos/síntese química , Fótons , Estrutura Molecular , Imagem Óptica , Células Vegetais
3.
Angew Chem Int Ed Engl ; 62(52): e202314996, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37965846

RESUMO

Condensed films of functional luminophores dominated by the magnitude and dimensionality of the intermolecular interactions play important roles in sensing performance. However, controlling the molecular assembly and regulating photophysical properties remain challenging. In this study, a new luminophore, ortho-PBI-Au, was synthesized by anchoring a cyclometalated alkynyl-gold(III) unit at the ortho-position of perylene bisimide. An unprecedented T-type packing model driven by weak Au-π interaction and Au-H bonds was observed, laying foundation for striking properties of the luminophore. Controlled assembly of ortho-PBI-Au at the air-water interface, realized using the classical Langmuir-Schaeffer technique, afforded the obtained luminescent films with different packing structures. With an optimized film, sensitive, selective, and rapid detection of a hazardous new psychoactive substance, phenylethylamine (PEA), was achieved. The detection limit, response time, and recovery time were <4 ppb, <1 s, and <5 s, respectively, surpassing the performance of the PEA sensors known thus far. The relationship between the characters of films and the sensing performance was systematically examined by grey relational analysis (GRA). The present study suggests that designing novel molecular aggregation with definite adlayer structure is a crucial strategy to enhance the sensing performance, which could be favorable for the film-based fluorescent sensors.

4.
J Phys Chem B ; 127(47): 10171-10178, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37967951

RESUMO

Time-resolved evolution of excited states in the twist-conjugated chromophores is of great fundamental interest for photoluminescent applications. The four diaryl BODIPY triads modified with diverse end-cappers at 2,6-positions were investigated properly, and considerable two-photon absorption capabilities in the first biological spectral window were obtained. Fast relaxations from the initially twisted conformation to the planarized conformation in the excited state were resolved spectrally and kinetically, accompanied by the discernible phenomenon of the fluorescence dynamic Stokes shift (DSS). Along with increasing electron donating capabilities and solvent polarities, the characteristics of structural rearrangement and intramolecular charge transfer have been estimated by enhanced DSS behaviors. Especially, the blue-shifted DSS was rationalized as the sequence conversion between the planarized state and the twisted charge transfer state. A molecular-level picture for relaxation pathways in different polarities was depicted and supported by the theoretical simulations. Significant and fast structural motions in this work contribute to the excited-state dynamics and rational development of versatile BODIPY chromophores.

5.
J Phys Chem Lett ; 14(32): 7283-7289, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37560981

RESUMO

Versatile coupling theories have been developed for rationalizing unusual aggregation phenomena of multipolar chromophores. Here, diverse excitonic couplings of a quadrupolar squaraine dye protonated by trifluoroacetic acid could be achieved and tuned unprecedentedly in different solvation media. Subtle changes of the solvent and ion pair influenced the aggregation of the donor-acceptor-donor (D-A-D)-type SQC6 and led to significant variations in optical properties. In contrast to conventional H/J aggregates, strong spectroscopic evidence of nonfluorescent and red-shifted hJ aggregation was obtained. Assumptions of the excitonic interplay with variable strength stabilized by the synergic contributions of π-π stacking and electronic interaction were addressed. Comparative excited-state dynamics in the aggregates clarified the distinctive excitonic coupling of adjacent quadrupolar molecules and the nature of the excited state beyond the dimers. Meanwhile, dominant two-photon absorption transitions could be elucidated by a resonance-enhanced mechanism. The present unusual molecular interplay provides a strategy to fine tune the optical properties of multipolar aggregates.

6.
J Colloid Interface Sci ; 649: 214-222, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37348341

RESUMO

Achieving highly stable and efficient perovskite nanocrystals (NCs) without applying functional additives or encapsulation, particularly sustaining the stability in ultra-dilute solution, is still a formidable challenge. Here, we show the FAPbI3 perovskite NCs with achieved ∼100 % photoluminescence quantum yield (PLQY) and low defect density (∼0.2 cm-3 per NCs), which is obtained by controlling the velocity field distribution of antisolvent flow in ligand-assisted reprecipitation process. The NCs show incredible reproducibility with narrow deviation of PLQY and linewidth between batch by batch, as well as remarkable stability of maintaining over 80 % PLQY, either in an ultra-diluted solution (9.3 × 10-6 mg/mL), or storing in ambient condition after 90 days with concentration of 0.09 mg/mL. The results in this work demonstrate the interplay of fluid mechanics and crystallization kinetics of perovskite, which pioneers a novel and unprecedent understanding for improving the stability of perovskite NCs for efficient quantum light source.

7.
J Am Chem Soc ; 145(13): 7408-7415, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36930832

RESUMO

Excited-state intramolecular proton transfer (ESIPT) has been widely employed for the design of a variety of functionality-led molecular systems. However, precise manipulation of the excited-state reaction is challenging. Herein, we report a new tactic for tuning ESIPT via incorporating an excited-state intramolecular charge transfer (ESICT) process. Specifically, three o-carborane derivatives, NaCBO, PaCBO, and PyCBO, were designed, where the 2-(2'-hydroxyphenyl)-benzothiazole is a typical ESIPT unit functioning as an electron acceptor, and the electron-donating units are naphthyl-(Na), phenanthrenyl-(Pa), and pyrenyl-(Py), respectively. The architectures of the molecules are featured with a face-to-face alignment of the two units. Spectroscopy and theoretical calculation studies revealed that the electron-donating capacity of the donors and solvent polarity continuously modulate the ESIPT/ESICT energetics and dynamics, resulting in distinct emissions. Moreover, the molecules depicted not only highly porous structures but also very different fluorescent colors in the solid state, enabling highly selective film-based fluorescence sensing of mustard gas simulant, 2-chloroethyl ethyl sulfide, with a detection limit of 50 ppb and a response time of 5 s. This work thus provides a reliable strategy for the creation of high-performance sensing fluorophores via ESIPT manipulation.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36753052

RESUMO

Pure-bromide quasi-2D perovskite (PBQ-2DP) promises high-performance light-emitting diodes (LEDs), while a challenge remains on control over its n-phase distribution for bright true-blue emission. Present work addresses the challenge through exploring the passivation molecule of amino acid with reinforced binding energy, which generates narrow n-phase distribution preferentially at n = 3 with true blue emission at 478 nm. Consequently, a peak external quantum efficiency of 5.52% and a record brightness of 512 cd m-2 are achieved on the PBQ-2DP-based true blue PeLED, these both values located among the top in the records of similar devices. We further reveal that the electron-phonon coupling results in the red-shifted emission in the PBQ-2DP film, suggesting that the view of n-phase distribution dominated true-blue emission in PBQ-2DP needs to be revisited, pointing out a guideline of electron-phonon coupling suppression to relieve the strait of realizing true blue or even deep blue emission in the PBQ-2DP film.

10.
J Phys Chem B ; 127(4): 828-837, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36692385

RESUMO

Film-based fluorescent sensors (FFSs) represent an important chemistry technology for meeting the urgent needs of on-site and real-time analysis, thereby enabling significant applications in environmental and health monitoring. As the core of FFSs, innovative design of sensing fluorophores and their intrinsic excited-state-related response nature endow FFSs with superior sensing performances in an endless expansion. In this Perspective, we specifically focus on perylene bisimide (PBI)-containing polyads and multichromophores with rigid configuration and notable photochemical stability for developing high-performance FFSs. These nonplanar structures mitigate aggregation and create abundant gaps for the sake of mass transfer and availability of the sensing units in the adlayer of the sensing films. We also comprehensively discuss how to adjust electronic coupling governing the excited-state events by appropriate functionalization strategies, thus providing a plethora of valuable insights for the exploration of the structure-property relationships in these orchestrated molecular systems. Throughout this Perspective, we also identify opportunities for FFSs in the future developments.

11.
ACS Appl Mater Interfaces ; 14(47): 53323-53330, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36382999

RESUMO

Promising techniques for detecting and quantifying active components in the plants and foods have received global concern in smart agriculture. Dual-mode optical assays are becoming more attractive and popular thanks to robust and reliable analysis parameters. We herein unveil a novel turn-on and dual-mode sensor array comprising three kinds of reactive indicators including ring-closed rhodamine-hydrazine, squaraine-hydrazine, and 2,4-dinitrophenylhydrazine for evaluating perillaldehyde. Significant colorimetric and fluorescent changes were triggered through reacting primary amine/hydrazine with the active aldehyde group in perillaldehyde, thus turning on the chromogenic responses of all the indicators. Optimal colorimetric sensing showed good responses to perillaldehyde ranged up to 100 mM in ethanol. Dramatic fluorescence enhancement was also exhibited, illustrating good selectivity as well as high sensitivity (detection limit ∼20.0 µM). Inspired by rapid chemical reactions and distinct optical changes, distinct sensor array strips loaded with the optimal solid-state reactive indicators were developed for evaluating the perillaldehyde content in the perilla frutescence leaves. Smartphone-enabled readout system and digital data processing were further performed for chemometric analysis. A good correlation was obtained and the semiquantitative evaluation of the perillaldehyde content could be achieved within 15 min, possessing the significant features of naked-eye recognition, easy operation, and disposability. To the best of our knowledge, present work demonstrated the use of chromogenic sensing strips to evaluate the active perillaldehyde content in solution and vapor phases for the first time. Taken together, these characteristics also indicate that the present turn-on sensor array has great potential applications in the precise detection and evaluation of perillaldehyde in the forthcoming smart agriculture.


Assuntos
Monoterpenos , Smartphone , Folhas de Planta , Hidrazinas
12.
Molecules ; 27(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36080287

RESUMO

Two water-soluble single-benzene-based chromophores, 2,5-di(azetidine-1-yl)-tereph- thalic acid (DAPA) and its disodium carboxylate (DAP-Na), were conveniently obtained. Both chromophores preserved moderate quantum yields in a wide range of polar and protonic solvents. Spectroscopic studies demonstrated that DAPA exhibited red luminescence as well as large Stokes shift (>200 nm) in aqueous solutions. Femtosecond transient absorption spectra illustrated quadrupolar DAPA usually involved the formation of an intramolecular charge transfer state. Its Frank−Condon state could be rapidly relaxed to a slight symmetry-breaking state upon light excitation following the solvent relaxation, then the slight charge separation may occur and the charge localization became partially asymmetrical in polar environments. Density functional theory (DFT) calculation results were supported well with the experimental measurements. Unique pH-dependent fluorescent properties endows the two chromophores with rapid, highly selective, and sensitive responses to the amino acids in aqueous media. In detail, DAPA served as a fluorescence turn-on probe with a detection limit (DL) of 0.50 µM for Arg and with that of 0.41 µM for Lys. In contrast, DAP-Na featured bright green luminescence and showed fluorescence turn-off responses to Asp and Glu with the DLs of 0.12 µM and 0.16 µM, respectively. Meanwhile, these two simple-structure probes exhibited strong anti-interference ability towards other natural amino acids and realized visual identification of specific analytes. The present work helps to understand the photophysic−structure relationship of these kinds of compounds and render their fluorescent detection applications.


Assuntos
Benzeno , Água , Aminoácidos , Fluorescência , Solventes/química , Espectrometria de Fluorescência , Análise Espectral
13.
Anal Chem ; 94(32): 11151-11158, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35921590

RESUMO

Reliable detection of airborne chemical warfare agents (CWAs) at the site and in real-time remains a challenge due to the rarity of miniaturized analytical tools. Herein, an o-carborane-functionalized benzothiazole derivative (PCBO) with excited-state intramolecular proton transfer (ESIPT) and AIE characteristics was synthesized. The PCBO-based film sensor showed a highly sensitive response to representative simulants of CWAs, and detection limits were found to be 1.0 mg·m-3 for triphosgene, 6.0 mg·m-3 for chloroethyl ethyl sulfide, and 0.2 mg·m-3 for diethyl chlorophosphite. Moreover, the sensor showed great reusability (>100 cycles) and unprecedented response speed (<0.5 s). The excellent sensing performance was ascribed to the microenvironmental sensitivity of the sensing fluorophore, the porous adlayer structure of the film, and the specific binding of the fluorophore to the analytes. Furthermore, discrimination and identification of the examined CWA simulants were realized via the introduction of another fluorophore (HCBO)-based film. Importantly, a portable fluorescent CWA detector was built with the sensor as the key component, and its applicability was demonstrated by the successful detection of a typical CWA sample (Sarin). The present study indicates that fluorescent film sensors could satisfy reliable onsite and real-time detection of harmful chemicals.


Assuntos
Substâncias para a Guerra Química , Substâncias para a Guerra Química/análise , Corantes Fluorescentes , Prótons , Sarina/química , Sulfetos
14.
Angew Chem Int Ed Engl ; 61(41): e202211106, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35980221

RESUMO

Achieving wide-range tunable emission colors, especially in the solid state of single-fluorophore materials, remains a significant challenge. Herein, we report a molecular design strategy that affords wide-range excitation-dependent emissions spanning over ≈230 nm in crystalline states. Under the donor-π-acceptor configuration, we judiciously choose a rotatable acceptor fragment, o-carborane, to enrich conformational diversities in the crystalline state and generate conformation-dependent multicolor emissions. We further show that this molecular platform is generalizable in creating crystalline materials with multicolor emissions. Based on these materials, a high-capacity information storage device and a finite-state machine were fabricated to showcase multicolor displays and information storage.

15.
J Colloid Interface Sci ; 627: 569-577, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35870409

RESUMO

Interfacial nanofilms with nonlinear optical (NLO) properties were prepared via confined dynamic condensation of 4,4'-methylenedianiline (MDA) with the synthesized 2,3-bis(4-(bis(4-formylphenyl)amino)phenyl)fumaronitrile (BTFA). Investigated using the open-aperture Z-scan technique, BTFA showed reverse saturable absorption ascribed to the synergetic mechanisms of two-photon and excited-state absorption. In contrast, the as-prepared nanofilms demonstrated broadband saturable absorption within the spectral range of 720∼1700 nm. The characteristics of nonlinear absorption coefficient (ß) decreased along with increasing the incident pulse intensity. Taking advantage of the flexibility and post-machinability properties, the folding layers of the nanofilms offered the feasibility to fine-tune the specific NLO responses. The optimal ß value was found to be -10.1 cm/MW for eight-layer nanofilm as well as the normalized transmittance increased up to 35-fold at 800 nm. Utilized as a conceptual saturable absorber, the representative modulation depth and saturation intensity were observed to be around 2.4% and 7.37 GW/cm2 at 800 nm, respectively, comparable to traditional two-dimensional (2D) materials. Aiming to clarify the possible underlying physical processes, a four-level model was employed to illustrate the fast relaxation of the excited states. Present work demonstrates that proper design of building blocks combined with interfacially confined dynamic condensation enables rational development of high-performance NLO materials.

16.
Chem Commun (Camb) ; 58(50): 7082-7085, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35665788

RESUMO

Stabilizing reactive radical ions promises outstanding performances in photocatalysis, organic optoelectronics and photothermal therapies, but it remains a challenge. In this contribution, we firstly report a persistent radical anion (PBI˙--4Cz) derived from a propeller-shaped electron-deficient perylene bisimide-based pentad (PBI-4Cz). Detailed investigations confirm that PBI˙--4Cz could intactly exist under inert conditions, and its lifetime is sufficiently prolonged up to more than one week under ambient atmosphere. Such exceptional stability is ascribed to the synergistic effect of the high electron-affinity and structural shielding originating from the compact spatial arrangement of PBI-4Cz. This work contributes to rational design and appropriate chemical construction of stable open-shell species.


Assuntos
Imidas , Perileno , Ânions , Carbazóis , Imidas/química , Perileno/análogos & derivados , Perileno/química
17.
J Phys Chem B ; 126(26): 4939-4947, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35754397

RESUMO

Intramolecular charge transfer and excited-state symmetry breaking have a significant effect on the nonlinear optical properties of multipolar chromophores. Rigid and nonplanar perylene bisimide derivatives (PBIs) functionalized at bay positions were comparatively and comprehensively investigated. In apolar solvents, two quadrupolar molecular rotors showed an obvious decrease of the A0-0/A0-1 ratios, suggesting strong exciton coupling with the adjacent PBI units initiated by the π-π stacking. The vanishment of the preferable dimer emission in polar solvents supported the plausible phenomena of excited-state symmetry breaking, thanks to the facile rotation around the rigid linkers. Comparative femtosecond transition absorption studies confirmed their notable differences in relaxation dynamics and the generation of radical anions (PBI•-) and cations (PBI•+). The maxima two-photon absorption (2PA) wavelengths obtained for the molecular rotors were slightly red-shifted to 670 nm with intrinsic resonance-enhanced characteristics, reflecting the synergistic effect of functional positions and molecular architectures. Meanwhile, the obvious increase of significant 2PA cross-section values in polar solvents illustrated the stabilization of the symmetry-broken dipolar states. Further femtosecond Z-scan also manifested the contribution of excited-state dynamics on the nonlinear optical properties of multipolar chromophores.

18.
Angew Chem Int Ed Engl ; 61(35): e202207619, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35773211

RESUMO

New strategies are in high demand for fast, sensitive, selective, on-site and real-time detection of the important but challenging alkane vapors owing to their opto-electronic inertness. Herein, we report, for the first time, a high-performance fluorescent film sensor (FFS) for the alkanes with a rationally designed through-space charge transfer (TSCT) molecule as the sensing fluorophore. Steady-state fluorescence, femto-second transient absorption spectroscopy and theoretical studies revealed continuous TSCT dynamics in the excited U-shaped molecule with increasing medium polarity. Furthermore, the interlocked, face-to-face alignment between the donor and acceptor favors mass transport of the analyte molecules in the film state. As anticipated, the compound-based FFS showed an experimental detection limit of ≈10 ppm for n-pentane, less than 5 s for a full detection, negligible interference and super-stability, revealing the effectiveness of the design strategy. Notably, the sensor is small (≈3.7 cm3 ), power-saving, and workable at room temperature.

19.
ACS Appl Mater Interfaces ; 13(47): 56476-56484, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792326

RESUMO

Addressing the interactions between optical antennas and ensembles of emitters is particularly challenging. Charge transfer and Coulomb interactions complicate the understanding of the carrier dynamics coupled by antennas. Here, we show how Au antennas enhance the luminescence of CdSe/CdS quantum dot assemblies through carrier dynamics control within the framework of the local Kirchhoff law. The Au antennas inject hot electrons into quantum dot assemblies via plasmon-induced hot electron transfer that increases the carrier concentration. Also, the localized surface plasmon resonances of Au antennas favorably tilt the balance between nonradiative Auger processes and radiative recombination in the CdSe core. Eventually, a high bright (125,091.6 cd/m2) deep-red quantum dot light-emitting diode is obtained by combining with Au antennas. Our findings suggest a new understanding of light emission of assembled emitters coupled by antennas, which is of essential interest for the description of light-matter interaction in advanced optoelectronics.

20.
J Phys Chem B ; 125(41): 11540-11547, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34636571

RESUMO

Push-pull organic structures characterized by an intramolecular charge transfer (ICT) process and π-electron delocalization are potentially interesting luminescent materials. A series of three-dimensional o-carborane-containing perylene bisimide derivatives (PBIs) were synthesized, and their optical properties were systematically investigated to illustrate the stereo effect, especially on the two-photon absorption (2PA) and optical power limiting (OPL) properties. Open-aperture Z-scan curves showed that all four PBIs displayed strong and broad two-photon absorptivities based on the resonance-enhanced phenomenon. The maximum degenerate two-photon absorption cross section (δ2PA) increased with the number of PBI substituents. The derivative CB-PBI possessed a δ2PA value of ∼2400 GM at 650 nm, a significant enhancement in comparison with that of the parent PBI (∼719 GM), ascribed to the present stereo effect. When the aromatic-donating units changed from naphthyl and pyrenyl to PBI, the generated multidimensional intramolecular charge transfer (ICT) from the aromatic units to the o-carborane cage contributed to the 2PA processes. All of the fluorophores exhibited excellent optical power limiting (OPL) performances as well as a minimum limiting threshold of ∼4.98 mJ/cm2 for CB-PBI. These significant results not only allow us to get deep insight into the nature of the fundamental stereo effect and nonlinear optical (NLO) response involved but also guide us toward the design of new multifunctional luminescent materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...