Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 2): 131146, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561116

RESUMO

Diseases caused by pathogens severely hampered the development of aquaculture, especially largemouth bass virus (LMBV) has caused massive mortality and severe economic losses to the culture of largemouth bass (Micropterus salmoides). Considering the environmental hazards and human health, effective and environmentally friendly therapy strategy against LMBV is of vital importance and in pressing need. In the present study, a novel nanobody (NbE4) specific for LMBV was selected from a phage display nanobody library. Immunofluorescence and indirect ELISA showed that NbE4 could recognize LMBV virions and had strong binding capacity, but RT-qPCR evidenced that NBE4 did not render the virus uninfectious. Besides, antiviral drug ribavirin was used to construct a targeted drug system delivered by bacterial nanocellulose (BNC). RT-qPCR revealed that NbE4 could significantly enhance the antiviral activity of ribavirin in vitro and in vivo. The targeted drug delivery system (BNC-Ribavirin-NbE4, BRN) reduced the inflammatory response caused by LMBV infection and improved survival rate (BRN-L, 33.3 %; BRN-M, 46.7 %; BRN-H, 56.7 %)compared with control group (13.3 %), ribavirin group (RBV, 26.7 %) and BNC-ribavirin (BNC-R, 40.0 %), respectively. This research provided an effective antiviral strategy that improved the drug therapeutic effect and thus reduced the dosage.


Assuntos
Antivirais , Bass , Celulose , Doenças dos Peixes , Anticorpos de Domínio Único , Animais , Bass/virologia , Bass/imunologia , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Celulose/química , Celulose/farmacologia , Antivirais/farmacologia , Antivirais/química , Doenças dos Peixes/virologia , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/imunologia , Ribavirina/farmacologia , Ribavirina/administração & dosagem , Ranavirus/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Bactérias/efeitos dos fármacos
2.
Eur J Med Chem ; 269: 116338, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522112

RESUMO

Monogenea, a prevalent parasite in aquaculture, poses significant threats to the industry, leading to substantial losses. Current preventive measures have proven insufficient, necessitating the development of novel and effective anti-parasitic drugs. In this investigation, we obtained the full-length myosin cDNA sequence by analyzing three-generation transcriptome data, revealing a 5817-base sequence encoding 1938 amino acids. Subsequently, we modeled and analyzed the characteristics of the secondary and tertiary of myosin, pinpointing the crucial functional region within the motor domain (amino acids 1-768). The prokaryotic expression of this domain yielded a protein of 87.44 kDa, confirmed as myosin by Western Blotting. Molecular docking identified ASN439 as the key amino acid residue involved in arctigenin and myosin binding, a result corroborated by site-directed mutagenesis, affirming the active cavity of this interaction. Chalcone and shikonin were chosen from a virtual sieve of molecular library of natural drugs based on the active cavity. Chalcone and shikonin exhibited EC50 values of 1.085 mg/L and 0.371 mg/L, respectively, with corresponding IC50 values for myosin of 0.44 mM and 0.14 mM. Given its superior activity and structure, shikonin was selected for further optimization of drug molecule design, culminating in the discovery of 1,4-naphthoquinone as a potent antiparasitic agent. This compound demonstrated an EC50 of 0.047 mg/L, LC50 of 0.23 mg/L, and a TI index of 4.893. These findings collectively highlight the potential of shikonin and 1,4-naphthoquinone as alternative compounds to control Gyrodactylus infections. Further optimization of medicinal chemistry holds promise for the development of more potent 1,4-naphthoquinone analogues, offering prospects for future anthelmintic control through combinatorial or replacement strategies.


Assuntos
Anti-Helmínticos , Chalconas , Naftoquinonas , Simulação de Acoplamento Molecular , Desenho de Fármacos , Aminoácidos
3.
Fish Shellfish Immunol ; 144: 109267, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043875

RESUMO

Streptococcosis is a highly contagious aquatic bacterial disease that poses a significant threat to tilapia. Vaccination is a well-known effective measure to prevent and control fish bacterial diseases. Among the various immunization methods, immersion vaccination is simple and can be widely used in aquaculture. Besides, nanocarrier delivery technology has been reported as an effective solution to improve the immune effect of immersion vaccine. In this study, the surface immunogenic protein (Sip) was proved to be conserved and potential to provide cross-immunoprotection for both Streptococcus agalactiae (S. agalactiae) and Streptococcus iniae (S. iniae) by multiple sequences alignment and Western blotting analysis. On this basis, we expressed and obtained the recombinant protein rSip and connected it with functionalized carbon nanotubes (CNT) to construct the nanocarrier vaccine system CNT-rSip. After immersion immunization, the immune effect of CNT-rSip against above two streptococcus infections was evaluated in tilapia based on some aspects including the serum specific antibody level, non-specific enzyme activities, immune-related genes expression and relative percent survival (RPS) after bacteria challenge. The results showed that compared with control group, CNT-rSip significantly (P < 0.05) increased the serum antibody levels, related enzyme activities including acid phosphatase, alkaline phosphatase, lysozyme and total antioxidant capacity activities, as well as the expression levels of immune-related genes from 2 to 4 weeks post immunization (wpi), and all these indexes peaked at 3 wpi. Besides, the above indexes of CNT-rSip were higher than those of rSip group with different extend during the experiment. Furthermore, the challenge test indicated that CNT-rSip provided cross-immunoprotection against S. agalactiae and S. iniae infection with RPS of 75 % and 72.41 %, respectively, which were much higher than those of other groups. Our study indicated that the nanocarrier immersion vaccine CNT-rSip could significantly improve the antibody titer and confer cross-immuneprotection against S. agalactiae and S. iniae infection in tilapia.


Assuntos
Vacinas Bacterianas , Doenças dos Peixes , Nanotubos de Carbono , Infecções Estreptocócicas , Tilápia , Animais , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Imersão , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae , Streptococcus iniae
4.
Int J Biol Macromol ; 253(Pt 1): 126670, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37660857

RESUMO

Streptococcal disease has severely restricted the development of global tilapia industry, which is mainly caused by Streptococcus agalactiae (S. agalactiae) and Streptococcus iniae (S. iniae). Vaccination has been proved to be a potential strategy to control it. In this study, a multi-epitope subunit vaccine Sip-Srr (SS) was prepared based on the B-cell antigenic epitopes prediction and multiple sequence alignment analysis of Sip and Srr sequences. Furthermore, the BNC-rSS nanocarrier vaccine system was constructed by connecting the rSS protein with modified bacterial nanocellulose (BNCs) and characterized by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscope, the immersion immune effect against S. agalactiae and S. iniae infection was evaluated. The results showed that compared with the control group, BNC-rSS significantly enhanced serum antibody production, related enzyme activities and immune-related genes expression. It was noteworthy that BNC-rSS vaccine improved immune protection of tilapia, with survival rates of 66.67 % (S. agalactiae) and 60.00 % (S. iniae), respectively, compared with those of rSS vaccine (30 % and 33.33 %, respectively). Our study indicated that the BNC-rSS nanovaccine could elicit robust immune responses in tilapia by immersion immunization, and had the potential to offer cross-protection against S. agalactiae and S. iniae infection in tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Tilápia , Animais , Streptococcus agalactiae , Streptococcus iniae , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Vacinas Bacterianas
5.
Vaccines (Basel) ; 11(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37515077

RESUMO

Tilapia, as one of the fish widely cultured around the world, is suffering severe impact from the streptococcus disease with the deterioration of the breeding environment and the increasing of breeding density, which brings serious economic loss to tilapia farming. In this study, the surface immunogenic protein (Sip) of Streptococcus agalactiae (S. agalactiae) was selected as the potential candidate antigen and connected with bacterial nano cellulose (BNC) to construct the nanocarrier subunit vaccine (BNC-rSip), and the immersion immune effects against S. agalactiae and Streptococcus iniae (S. iniae) in Nile tilapia were evaluated on the basis of the serum antibody level, non-specific enzyme activity, the immune-related gene expression and relative percent survival (RPS). The results indicated that Sip possessed the expected immunogenicity according to the immunoinformatic analysis. Compared with the rSip group, BNC-rSip significantly induced serum antibody production and improved the innate immunity level of tilapia. After challenge, the RPS of BNC-rSip groups were 78.95% (S. agalactiae) and 67.86% (S. iniae), which were both higher than those of rSip groups,31.58% (S. agalactiae) and 35.71% (S. iniae), respectively. Our study indicated that BNC-rSip can induce protective immunity for tilapia through immersion immunization and may be an ideal candidate vaccine for controlling tilapia streptococcal disease.

6.
Huan Jing Ke Xue ; 44(1): 48-57, 2023 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-36635794

RESUMO

The multi-scale variation trend of PM2.5-O3 compound pollution events was analyzed based on air quality data, meteorological data, and COVID-19 data in Beijing from 2015 to 2020. For the threshold of compound pollution, a compound pollution index was proposed, and the numerical response trend was evaluated based on the generalized additive model. A distributed lag nonlinear model was introduced to analyze the risk response relationship between compound pollution and influencing factors. The results showed that the events of PM2.5-O3 compound pollution in Beijing decreased annually. At the same time, due to the influence of pollutant emissions and meteorological conditions, there were obvious seasonal effects, week effects, holiday effects, and epidemic effects. The composite pollution index had no correlation with rainfall but had a linear positive correlation with O3 and air temperature and a nonlinear correlation with other explanatory variables. Air pollutants and meteorological conditions had obvious lag effects on the composite pollution index, and the lag effects were mainly concentrated in 1-3 d. PM2.5, PM10, O3, SO2, and air temperature in high-value areas significantly increased the risk of compound pollution. The CO (1-6 mg·m-3), NO2 (38-118 µg·m-3), and relative humidity (54%-87%) in the median section would also increase the risk of compound pollution, as would low wind speed. The compound pollution events showed a trend of multi-day continuous pollution in the numerical response. Compared with PM2.5 and PM10, compound pollution events were more dependent on O3, and the compound pollution rate in high-value areas was 30.7%-47.5%. CO and relative humidity had little effect on compound pollution events. The air temperature had the greatest impact, and 84.7% of the composite pollution incidents occurred at 20-30℃.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Humanos , Pequim/epidemiologia , Monitoramento Ambiental/métodos , COVID-19/epidemiologia , Poluentes Atmosféricos/análise , Material Particulado/análise , China/epidemiologia
7.
J Fish Dis ; 46(3): 261-271, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36504104

RESUMO

Largemouth bass virus (LMBV) is a systemic viral pathogen that can cause high mortality rates in cultivated largemouth bass. However, no treatment is currently approved. Therapeutic strategies against LMBV infection are urgently needed. In this study, we investigated the antiviral activity of piperine against LMBV in vitro and in vivo. In vitro antiviral activity assay showed that 210.28 µM piperine significantly decreased LMBV major capsid protein (MCP) gene expression in epithelioma papulosum cyprinid (EPC) cells by a maximum inhibitory rate of >95%. Piperine treatment inhibited LMBV replication in a dose-dependent manner, with the half-maximal activity (IC50 ) of 34.61 µM. Moreover, piperine significantly decreased the viral titers and cytopathic effects (CPE), contributing to the protection of infected cells. With regard to the steps of piperine affecting the life cycle of viruses, piperine had a direct inactivating effect on LMBV. During the virus adsorption phase, piperine prevented the adsorption of LMBV to EPC cells. Furthermore, piperine played an antiviral role mainly in the later stages of viral infection (4-8 h). To further evaluate the antiviral activity of piperine against LMBV in vivo, largemouth bass as a model organism was carried out in relevant experiments. Intraperitoneal injection of piperine (25 mg/kg) effectively improved the survival rate of LMBV-infected largemouth bass by 20%. In addition, RT-qPCR results of viral replication in liver, spleen, kidney, gill and swim bladder tissues showed that piperine significantly inhibited LMBV replication in vivo, thus protecting largemouth bass from LMBV-induced death. Together, our results suggested that piperine is a therapeutic and preventative agent against LMBV infection.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Animais , Proteínas Virais , Aquicultura , Replicação Viral , Antivirais
8.
Sci Total Environ ; 859(Pt 2): 160341, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36414067

RESUMO

Viruses are the most abundant microorganisms on the earth, their existence in contaminated waters possesses a significant threat to humans. Waterborne viral infections could be fatal to sensitive population including young child, the elderly, and the immune-compromised. It is imperative to remove viruses during water treatment to better protect public health, especially in the light of evidence of detection of coronaviruses genetic fragments in raw sewage. We reported bench-scale experiments evaluating the extent and mechanisms of removal of a model virus (spring viremia of carp virus, SVCV) in water by adsorption. Microspheres made by boronic acid-modified bacterial cellulose with excellent mechanical strength were successfully fabricated as packing materials for the column to remove glycoproteins and enveloped viruses from water. The synthesized adsorbent was characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Brunauer Emmett Teller (BET) measurement. The adsorption efficiency of glycoproteins was investigated by SDS-PAGE and the Broadford protein assay, while the binding capacity with the virus (spring viremia of carp virus) was monitored by cell culture to calculate the viral cytopathic effect and viral titer caused by the virus. The data obtained from the above experiments showed that ∼3-log removal of SVCV in 3 h, which significantly reduced the virus concentration from microspheres packed column. The present study provides substantial evidence to prove beyond doubt that material based on bacterial cellulose seems to have the potential for virus removal from water which can be extended to systems of significant importance.


Assuntos
Carpas , Poluentes Químicos da Água , Purificação da Água , Animais , Criança , Humanos , Idoso , Ácidos Borônicos , Celulose/química , Adsorção , Microesferas , Espectroscopia de Infravermelho com Transformada de Fourier , Cinética , Poluentes Químicos da Água/análise
9.
Hum Brain Mapp ; 43(17): 5210-5219, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35808916

RESUMO

It has been suggested that developmental dyslexia may have two dissociable causes-a phonological deficit and a visual attention span (VAS) deficit. Yet, neural evidence for such a dissociation is still lacking. This study adopted a data-driven approach to white matter network analysis to explore hubs and hub-related networks corresponding to VAS and phonological accuracy in a group of French dyslexic children aged from 9 to 14 years. A double dissociation in brain-behavior relations was observed. Structural connectivity of the occipital-parietal network surrounding the left superior occipital gyrus hub accounted for individual differences in dyslexic children's VAS, but not in phonological processing accuracy. In contrast, structural connectivity of two networks: the temporal-parietal-occipital network surrounding the left middle temporal gyrus hub and the frontal network surrounding the left medial orbital superior frontal gyrus hub, accounted for individual differences in dyslexic children's phonological processing accuracy, but not in VAS. Our findings provide evidence in favor of distinct neural circuits corresponding to VAS and phonological deficits in developmental dyslexia. The study points to connectivity-constrained white matter subnetwork dysfunction as a key principle for understanding individual differences of cognitive deficits in developmental dyslexia.


Assuntos
Dislexia , Substância Branca , Criança , Humanos , Substância Branca/diagnóstico por imagem , Fonética , Dislexia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Leitura
10.
Viruses ; 14(7)2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35891401

RESUMO

Micropterus salmoides rhabdovirus (MSRV) is a primary viral pathogen in largemouth bass aquaculture, which leads to tremendous economic losses yearly. Currently, there are no approved drugs for the treatment and control of this virus. Our previous studies screened the herb Magnolia officinalis from many traditional Chinese medicines, and we isolated and identified magnolol as its main active compound against multiple rhabdoviruses, including MSRV. On the basis of the structure-activity relationship and pharmacophore model of magnolol, two new magnolol derivatives, namely, hydrogenated magnolol and 2,2'-dimethoxy-magnolol, were designed and synthesized. Their anti-MSRV activities were systematically investigated both in vitro and in vivo. By comparing the half-maximal inhibitory concentration (IC50), it was found that hydrogenated magnolol possessed a higher anti-MSRV activity than magnolol and 2,2'-dimethoxy-magnolol, with an IC50 of 13.37 µM. Furthermore, hydrogenated magnolol exhibited a protective effect on the grass carp ovary (GCO) cell line by reducing the cytopathic effect induced by MSRV. Further studies revealed that hydrogenated magnolol did not directly impact virions or interfere with MSRV adsorption. It worked within the 6-8 h of the phase of virus replication. In vivo treatment of MSRV infection with magnolol and hydrogenated magnolol showed that they significantly improved the survival rate by 44.6% and 62.7%, respectively, compared to MSRV-infected groups. The viral load measured by the expression of viral glycoprotein in the organs including the liver, spleen, and kidney also significantly decreased when fish were intraperitoneally injected at a dose of 20 mg/kg. Altogether, the structural optimization of magnolol via hydrogenation of the propylene groups increased its anti-MSRV activity both in vitro and in vivo. These results may provide a valuable reference for anti-MSRV drug discovery and development in aquaculture.


Assuntos
Bass , Doenças dos Peixes , Lignanas , Rhabdoviridae , Animais , Compostos de Bifenilo/farmacologia , Feminino , Doenças dos Peixes/tratamento farmacológico , Lignanas/farmacologia , Lignanas/uso terapêutico
11.
Environ Pollut ; 307: 119544, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636715

RESUMO

Significant concerns have been raised regarding to the pollution of antibiotics in recent years due to the abuse of antibiotics and their high detection rate in water. Herein, a novel super adsorbent, boronic acid-modified bacterial cellulose microspheres with a size of 415 µm in diameter was prepared through a facile water-in-oil emulsion method. The adsorbent was characterized by atomic force microscopy, scanning electron microscopy, and fourier transform infrared spectroscopy analyses to confirm its properties. The microspheres were applied as packing materials for the adsorption of tetracycline (TC) from an aqueous solution and hoggery sewer via the reversible covalent interaction between cis-diol groups in TC molecules and the boronic acid ligand. TC adsorption performance had been systemically investigated under various conditions, including the pH, temperature, TC concentration, contact time, and ionic strength. Results showed that the adsorption met pseudo-second-order, Elovich kinetic model and Sips, Redlich-Peterson isothermal models. And the adsorption process was spontaneous and endothermic, with the maximum TC adsorption capacity of 614.2 mg/g. After 18 adsorption-desorption cycles, the adsorption capacity remained as high as 84.5% compared with their original adsorption capacity. Compared with other reported adsorption materials, the microspheres had high adsorption capacity, a simple preparation process, and excellent recovery performance, demonstrating great potential in application on TC removal for water purification and providing new insights into the antibiotic's adsorption behavior of bacterial cellulose-based microspheres.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Antibacterianos/química , Ácidos Borônicos , Celulose , Concentração de Íons de Hidrogênio , Cinética , Microesferas , Tetraciclina/química , Água/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
12.
Parasitol Int ; 88: 102535, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34995771

RESUMO

Dactylogyrus is a common parasitic pathogen, which causes high mortality of fish when presents in large numbers, resulting in serious economic losses. Herbal medicines contain myriad of bioactive compounds is a valuable reserve for developing safe and effective anti-parasite drugs. Here, we conducted bioassay-guided fractionation to isolate and identify the anti-parasitic constituents from Spatholobi caulis. Among five extraction solvents (petroleum ether, chloroform, ethyl acetate, methanol and water), S. caulis methanolic extract had the highest parasiticide activity in Carassius auratus, and therefore subjected to further separation and purification using multiple chromatography methods. One compound exhibiting the strongest parasiticidal activity was obtained and identified as ononin by analyzing its spectral data (NMR and ESI-MS). The EC50 value of ononin against Dactylogyrus was 0.655 mg/L and showed 100% parasiticide activity with 3.0 mg/L. The 24, 48, 72, 96 h LC50 for goldfish were 4.691 (the 95% CI of 4.526-4.873) mg/L, 4.612 (4.441-4.800) mg/L, 4.472 (4.345-4.607) mg/L, 4.288 (4.155-4.428) mg/L, respectively. The present results discovered for the first time that ononin had potent parasiticidal activity and have the potential to be developed as new anti-parasitic drug for the control of Dactylogyrus.


Assuntos
Anti-Helmínticos , Doenças dos Peixes , Platelmintos , Trematódeos , Animais , Anti-Helmínticos/química , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/parasitologia , Glucosídeos , Carpa Dourada/parasitologia , Isoflavonas , Extratos Vegetais/química
13.
Microbiol Spectr ; 9(3): e0148721, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34817277

RESUMO

Viral diseases of the central nervous system (CNS) represent a major global health concern. Difficulties in treating these diseases are caused mainly by the biological tissues and barriers, which hinder the transport of drugs into the CNS. To counter this, a nanobody-mediated virus-targeting drug delivery platform (SWCNTs-P-A-Nb) is constructed for CNS viral disease therapy. Viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), is employed as a disease model. SWCNTs-P-A-Nb is successfully constructed by employing single-walled carbon nanotubes, amantadine, and NNV-specific nanobody (NNV-Nb) as the nanocarrier, anti-NNV drug, and targeting ligand, respectively. Results showed that SWCNTs-P-A-Nb has a good NNV-targeting ability in vitro and in vivo, improving the specific distribution of amantadine in NNV-infected sites under the guidance of NNV-Nb. SWCNTs-P-F-A-Nb can pass through the muscle and gill and be excreted by the kidney. SWCNTs-P-A-Nb can transport amantadine in a fast manner and prolong the action time, improving the anti-NNV activity of amantadine. Results so far have indicated that the nanobody-mediated NNV-targeting drug delivery platform is an effective method for VER therapy, providing new ideas and technologies for control of the CNS viral diseases. IMPORTANCE CNS viral diseases have resulted in many deadly epidemics throughout history and continue to pose one of the greatest threats to public health. Drug therapy remains challenging due to the complex structure and relative impermeability of the biological tissues and barriers. Therefore, development in the intelligent drug delivery platform is highly desired for CNS viral disease therapy. In the study, a nanobody-mediated virus-targeting drug delivery platform is constructed to explore the potential application of targeted therapy in CNS viral diseases. Our findings hold great promise for the application of targeted drug delivery in CNS viral disease therapy.


Assuntos
Amantadina/farmacologia , Viroses do Sistema Nervoso Central/terapia , Viroses do Sistema Nervoso Central/veterinária , Sistemas de Liberação de Medicamentos/métodos , Nodaviridae/efeitos dos fármacos , Anticorpos de Domínio Único/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular , Sistema Nervoso Central/virologia , Encefalite Viral/terapia , Encefalite Viral/virologia , Peixes , Nanotubos de Carbono , Nodaviridae/imunologia , Perciformes/virologia , Anticorpos de Domínio Único/imunologia
14.
Cortex ; 145: 57-66, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34689032

RESUMO

Cognitive theories have been proposed to clarify the causes and symptoms of dyslexia. However, correlations between local network parameters of white matter connectivity and literacy skills remain poorly known. An unbiased hypothesis-free approach was adopted to examine the correlations between literacy symptoms (reading and spelling) and hub-based white matter networks' connectivity parameters [nodal degree fractional anisotropy (FA) values] of 90 brain regions based on Anatomical Atlas Labels (AAL) in a group of French children with dyslexia aged 9-14 years. Results revealed that the higher the right fusiform gyrus's (FFG) nodal degree FA values, the lower the reading accuracy for words and pseudowords in dyslexic children. The results indicate that the severity of word/pseudoword reading symptoms in dyslexia relates to a white matter network centered around the right FFG. The negative correlation between right FFG network connectivity and reading accuracy, in particular pseudoword reading accuracy, suggests that right FFG represents a maladaptive compensation towards a general orthography-to-phonology decoding ability in developmental dyslexia.


Assuntos
Dislexia , Substância Branca , Encéfalo/diagnóstico por imagem , Criança , Dislexia/diagnóstico por imagem , Humanos , Leitura , Lobo Temporal , Substância Branca/diagnóstico por imagem
15.
Int J Mol Sci ; 21(19)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987823

RESUMO

The melanocortin receptor 4 (MC4R) signaling system consists of MC4R, MC4R ligands [melanocyte-stimulating hormone (MSH), adrenocorticotropin (ACTH), agouti-related protein (AgRP)], and melanocortin-2 receptor accessory protein 2 (MRAP2), and it has been proposed to play important roles in feeding and growth in vertebrates. However, the expression and functionality of this system have not been fully characterized in teleosts. Here, we cloned tilapia MC4R, MRAP2b, AgRPs (AgRP, AgRP2), and POMCs (POMCa1, POMCb) genes and characterized the interaction of tilapia MC4R with MRAP2b, AgRP, α-MSH, and ACTH in vitro. The results indicate the following. (1) Tilapia MC4R, MRAP2b, AgRPs, and POMCs share high amino acid identity with their mammalian counterparts. (2) Tilapia MRAP2b could interact with MC4R expressed in CHO cells, as demonstrated by Co-IP assay, and thus decrease MC4R constitutive activity and enhance its sensitivity to ACTH1-40. (3) As in mammals, AgRP can function as an inverse agonist and antagonist of MC4R, either in the presence or absence of MRAP2b. These data, together with the co-expression of MC4R, MRAP2b, AgRPs, and POMCs in tilapia hypothalamus, suggest that as in mammals, ACTH/α-MSH, AgRP, and MRAP2 can interact with MC4R to control energy balance and thus play conserved roles in the feeding and growth of teleosts.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciclídeos/metabolismo , Hipotálamo/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais , Animais
16.
Virus Res ; 285: 198019, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32417180

RESUMO

Rhabdoviruses cause devastating diseases in aquaculture, resulting in enormous economic losses. Our previous studies indicated that imidazole arctigenin derivatives possessed antiviral activities against aquatic rhabdoviruses. Based on the data of structure-activity relationship, a new imidazole arctigenin derivative, 4-(8-(2-bromoimidazole)octyloxy)-arctigenin (BOA), was designed and synthesized. And its antiviral activities against aquatic rhabdoviruses (SVCV, IHNV and MSRV) were evaluated in vitro. By comparing inhibitory concentration at half-maximal activity (IC 50), we found that BOA (IC50 = 1.11 µM) possessed a higher anti-IHNV activity than the antiviral imidazole arctigenin derivatives which were found in our previous study. Besides, BOA could cause profound inhibition of SVCV and MSRV replication. By the reduction assays on cytopathic effect, BOA exhibited a protective effect on two host cell lines. As a typical rhabdovirus, SVCV was chosen as a model to illuminate the anti-rhabdovirus mechanism of BOA. BOA was discovered to not impact directly on viral particles or interfere with SVCV adsorption. And it worked within the 2-6 h of the early phase of virus replication. In addition, after repression of cell cycle S phase and recovery of caspase-3/8/9 activities activated by SVCV, BOA inhibited SVCV-induced apoptosis and then reduced the release of viral particles at the late stage of virus replication. Altogether, BOA was expected to be a highly efficient antiviral agent against multiple rhabdoviruses in the field of aquaculture.


Assuntos
Antivirais/farmacologia , Doenças dos Peixes/tratamento farmacológico , Furanos/farmacologia , Lignanas/farmacologia , Infecções por Rhabdoviridae , Rhabdoviridae/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Aquicultura , Linhagem Celular , Peixes , Infecções por Rhabdoviridae/tratamento farmacológico , Infecções por Rhabdoviridae/veterinária
17.
Heliyon ; 5(6): e01899, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31245642

RESUMO

Since the surface immunogenic protein (Sip) of group B streptococcus was identified, it's immunogenicity and its potential as a universal vaccine candidate has been evaluated extensively. We developed recombinant Sip protein and used it for monoclonal antibody generation to develop immunochromatographic test kit for GBS detection. The test of bacteria and culture media revealed the correlation between Sip protein expression and diagnosis discrepancy, which has never been reported. Furthermore, not only the surface accessibility of the Sip protein may vary from strains or serotypes; the secretion level of Sip protein may also vary.

18.
Chembiochem ; 20(8): 1014-1018, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30589193

RESUMO

Doxorubicin is a hydrophobic anticancer drug that has poor selectivity, due to the lack of active targeting capability. Here, learning lessons from the success of antibody-drug conjugates, we have designed a new doxorubicin delivery system without conjugating doxorubicin to antibody directly. In this setup, cetuximab, an antibody that targets the epidermal growth factor receptor (EGFR) in cancer cells, was conjugated to a single-stranded DNA with a carefully designed sequence in a site-selective manner by using the DNA-templated protein conjugation (DTPC) method. The DNA duplex in the conjugates serves as a carrier of doxorubicin through noncovalent intercalation, and cetuximab functions as the targeting agent; this could drastically decrease systemic toxicity and potentially avoid under- or overdosing. The size of conjugates loaded with doxorubicin was about 8.77 or 16.61 nm when characterized by dynamic light scattering and atomic force microscopy, respectively. In vitro cytotoxicity and selective cancer cell killing was investigated against two EGFR+ cell lines (KB and MDA-MB-231) and one EGFR- cell line (NIH-3T3). Cytotoxicity and flow cytometry data showed that doxorubicin loaded in cetuximab-DNA conjugates was more potent in terms of cell cytotoxicity than free doxorubicin in EGFR-overexpressed cell lines, thus suggesting that the conjugates were more selectively and easily taken up into cells, followed by rapid release of doxorubicin from the system into the cytoplasm from endosomes.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Cetuximab/química , DNA/química , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Imunoconjugados/administração & dosagem , Animais , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Camundongos , Células NIH 3T3
20.
Angew Chem Int Ed Engl ; 56(46): 14423-14427, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-28873273

RESUMO

Immobilized antibodies are extensively employed for medical diagnostics, such as in enzyme-linked immunosorbent assays. Despite their widespread use, the ability to control the orientation of immobilized antibodies on surfaces is very limited. Herein, we report a method for the covalent and orientation-selective immobilization of antibodies in designed cavities in 2D and 3D DNA origami structures. Two tris(NTA)-modified strands are inserted into the cavity to form NTA-metal complexes with histidine clusters on the Fc domain. Subsequent covalent linkage to the antibody was achieved by coupling to lysine residues. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) confirmed the efficient immobilization of the antibodies in the origami structures. This increased control over the orientation of antibodies in nanostructures and on surfaces has the potential to direct the interactions between antibodies and targets and to provide more regular surface assemblies of antibodies.


Assuntos
Anticorpos/imunologia , Sítios de Ligação de Anticorpos , DNA Viral/química , DNA Viral/imunologia , Conformação de Ácido Nucleico , Anticorpos/química , Bacteriófago M13/genética , Imunoglobulina G/química , Imunoglobulina G/imunologia , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...