Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 436(8): 168513, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447889

RESUMO

Systemic fungal infections are a growing public health threat, and yet viable antifungal drug targets are limited as fungi share a similar proteome with humans. However, features of RNA metabolism and the noncoding transcriptomes in fungi are distinctive. For example, fungi harbor highly structured RNA elements that humans lack, such as self-splicing introns within key housekeeping genes in the mitochondria. However, the location and function of these mitochondrial riboregulatory elements has largely eluded characterization. Here we used an RNA-structure-based bioinformatics pipeline to identify the group I introns interrupting key mitochondrial genes in medically relevant fungi, revealing their fixation within a handful of genetic hotspots and their ubiquitous presence across divergent phylogenies of fungi, including all highest priority pathogens such as Candida albicans, Candida auris, Aspergillus fumigatus and Cryptococcus neoformans. We then biochemically characterized two representative introns from C. albicans and C. auris, demonstrating their exceptionally efficient splicing catalysis relative to previously-characterized group I introns. Indeed, the C. albicans mitochondrial intron displays extremely rapid catalytic turnover, even at ambient temperatures and physiological magnesium ion concentrations. Our results unmask a significant new set of players in the RNA metabolism of pathogenic fungi, suggesting a promising new type of antifungal drug target.


Assuntos
Antifúngicos , Candida albicans , Íntrons , Humanos , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Íntrons/genética , Splicing de RNA/genética , RNA Fúngico/metabolismo
2.
Inorg Chem ; 63(2): 1439-1448, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38178656

RESUMO

Low phonon tantalate-based phosphors with a layer structure are considered to have excellent upconversion luminescence (UCL) intensity, which could be reduced due to the existence of impure phase defects and inappropriate doped rare earth ions. To improve their UCL performance, we have prepared single-phase CaTa4O11:Er3+/Yb3+ samples by a molten salt synthesis (MSS) using KCl as the reaction medium and compared its UCL properties with counterparts made by a conventional solid-state reaction (SSR) in this study. We have demonstrated that the MSS samples have a much higher UCL intensity under 980 nm laser excitation than the SSR ones due to accurate replacement of Ca2+ sites by Er3+/Yb3+ in high-purity single-phase MSS samples. We have further enhanced the green UCL intensity of the MSS samples by 1.57 times via acid picking (AP). Under 980 nm laser excitation at a high powder density of 61.3 W/cm2, the green UCL intensity of the MSS-AP samples can reach 3.72 times that of the SSR-AP samples. For potential luminescence thermometry applications, the maximum absolute sensitivity (SA) of the MSS-AP samples reaches 0.01316 K-1 at 501 K based on the luminescence intensity ratio. This study shows that CaTa4O11:Er3+/Yb3+ phosphors prepared by the MSS method are single-phase samples with excellent pure green UCL as a suitable temperature sensing material.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123830, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38184878

RESUMO

Anti-counterfeiting labels based on luminescence materials are a newly emerging technique for protecting legal goods and intellectual property. In the anti-counterfeiting field to prevent forgery and cloning, luminescence materials with properties different from the commercialized and traditional ones are in urgent need. In this work, multicolor-emitting Er3+ single-doped and Er3+/Yb3+ co-doped Zn2GeO4 phosphors combining static and dynamic identifications were developed in order to achieve advanced anti-counterfeiting application. The variation of trap content with increasing the doping content of rare earth ions was analyzed through X - ray photoelectron spectroscopy, thermoluminescence analysis. It was found that there are two types of traps with different depth in Zn2GeO4 phosphors. The depths of the traps were experimentally confirmed to be 0.68 and 0.79 eV, respectively. The transient photocurrent response measurement confirmed the existence of charge carriers, and the mechanism for long persistent luminescence was deduced. The multicolor upconversion mechanisms under 980 and 1550 nm excitation were also discovered. Based on the multicolor steady and transient emission features, an anti-counterfeiting pattern was designed using the phosphors. Static and dynamic identification was demonstrated and presented in detail. Finally, it is indicated that the studied phosphors are excellent candidates for potential applications in luminescence anti-counterfeiting labels.

4.
Methods Enzymol ; 691: 185-207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37914446

RESUMO

RNA is playing an ever-growing role in molecular biology and biomedicine due to the many ways it influences gene expression and its increasing use in modern therapeutics. Hence, production of RNA molecules in large quantity and high purity has become essential for advancing basic scientific research and for developing next-generation therapeutics. T7 RNA polymerase (RNAP) is a DNA-dependent RNA polymerase of bacteriophage origin and it is the most widely-utilized tool enzyme for producing RNA. Here we describe a set of robust methods for in vitro transcribing RNA molecules from DNA templates using T7 RNAP, along with a set of subsequent RNA purification schemes. In the first part of this chapter, we provide the general method for T7 RNAP-based in vitro transcription and technical notes for troubleshooting failed or inefficient transcription. We also provide modified protocols for preparing specialized RNA transcripts. In the second part, we provide two purification methods using either gel-based denaturing purification or size exclusion column-based non-denaturing purification for isolating high-purity RNA products from transcription reaction mixtures and preparing them for downstream applications. This chapter is designed to provide researchers with versatile ways to efficiently generate RNA molecules of interest and a troubleshooting guide should they encounter problems while working with in vitro transcription using T7 RNAP.


Assuntos
RNA , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , DNA , Bacteriófago T7/genética , Bacteriófago T7/metabolismo
5.
Nature ; 624(7992): 682-688, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993708

RESUMO

The group II intron ribonucleoprotein is an archetypal splicing system with numerous mechanistic parallels to the spliceosome, including excision of lariat introns1,2. Despite the importance of branching in RNA metabolism, structural understanding of this process has remained elusive. Here we present a comprehensive analysis of three single-particle cryogenic electron microscopy structures captured along the splicing pathway. They reveal the network of molecular interactions that specifies the branchpoint adenosine and positions key functional groups to catalyse lariat formation and coordinate exon ligation. The structures also reveal conformational rearrangements of the branch helix and the mechanism of splice site exchange that facilitate the transition from branching to ligation. These findings shed light on the evolution of splicing and highlight the conservation of structural components, catalytic mechanism and dynamical strategies retained through time in premessenger RNA splicing machines.


Assuntos
Biocatálise , Íntrons , Conformação de Ácido Nucleico , Splicing de RNA , Adenosina/metabolismo , Microscopia Crioeletrônica , Éxons , Precursores de RNA/química , Precursores de RNA/metabolismo , Precursores de RNA/ultraestrutura , Sítios de Splice de RNA
6.
Nucleic Acids Res ; 50(13): e74, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35438748

RESUMO

Small molecule targeting of self-splicing RNAs like group I and II introns has been limited in part by the lack of a universal high-throughput screening platform for studies of splicing inhibition and kinetics. Here, we present the development of a molecular beacon assay for monitoring the accumulation of spliced exons during RNA splicing reactions. In this case, we applied it to the autocatalyzed reaction of the H.c.LSU group II intron found in the mitochondria of the pathogenic dimorphic fungus Histoplasma capsulatum. We find that a molecular beacon with the loop length of 18 nucleotides selectively recognizes ligated exons formed during self-splicing and exhibits high fluorescent signal upon binding of its target. We demonstrate that the fluorescent assay using molecular beacons can be successfully applied to kinetic characterization of the splicing reaction and determination of inhibition constants for small molecules. The results presented herein offer support for a molecular beacon approach to identifying small molecule inhibitors of intron splicing.


Assuntos
Técnicas Genéticas , Splicing de RNA , Éxons , Íntrons , RNA/genética , RNA/metabolismo
7.
Nucleic Acids Res ; 49(21): 12422-12432, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34850132

RESUMO

Fungal pathogens represent an expanding global health threat for which treatment options are limited. Self-splicing group II introns have emerged as promising drug targets, but their development has been limited by a lack of information on their distribution and architecture in pathogenic fungi. To meet this challenge, we developed a bioinformatic workflow for scanning sequence data to identify unique RNA structural signatures within group II introns. Using this approach, we discovered a set of ubiquitous introns within thermally dimorphic fungi (genera of Blastomyces, Coccidioides and Histoplasma). These introns are the most biochemically reactive group II introns ever reported, and they self-splice rapidly under near-physiological conditions without protein cofactors. Moreover, we demonstrated the small molecule targetability of these introns by showing that they can be inhibited by the FDA-approved drug mitoxantrone in vitro. Taken together, our results highlight the utility of structure-based informatic searches for identifying riboregulatory elements in pathogens, revealing a striking diversity of reactive self-splicing introns with great promise as antifungal drug targets.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Íntrons/genética , Fungos Mitospóricos/genética , Splicing de RNA/genética , Algoritmos , Sequência de Bases , Blastomyces/genética , Blastomyces/fisiologia , Coccidioides/genética , Coccidioides/fisiologia , Biologia Computacional/métodos , DNA Mitocondrial/química , Histoplasma/genética , Histoplasma/fisiologia , Humanos , Fungos Mitospóricos/classificação , Fungos Mitospóricos/patogenicidade , Mitoxantrona/farmacologia , Micoses/microbiologia , Conformação de Ácido Nucleico , Splicing de RNA/efeitos dos fármacos , Virulência/genética
8.
Chem Asian J ; 12(4): 465-469, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28052596

RESUMO

A green approach for the generation of ß-keto sulfones through a reaction of aryldiazonium tetrafluoroborates and sulfur dioxide with silyl enol ether under catalyst- and additive-free conditions has been realized. This reaction proceeds efficiently at room temperature and goes to completion in half an hour. During the reaction process, aryldiazonium tetrafluoroborate is treated with DABCO⋅(SO2 )2 (DABCO=1,4-diazabicyclo[2.2.2]octane) to provide a sulfonyl radical as the key intermediate, which then initiates the transformation. Oxidants or metal catalysts are avoided, and the presence of DABCO also plays an important role in the reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...