Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 247, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880726

RESUMO

BACKGROUND: The astrocytes in the central nervous system (CNS) exhibit morphological and functional diversity in brain region-specific pattern. Functional alterations of reactive astrocytes are commonly present in human temporal lobe epilepsy (TLE) cases, meanwhile the neuroinflammation mediated by reactive astrocytes may advance the development of hippocampal epilepsy in animal models. Nuclear factor I-A (NFIA) may regulate astrocyte diversity in the adult brain. However, whether NFIA endows the astrocytes with regional specificity to be involved in epileptogenesis remains elusive. METHODS: Here, we utilize an interference RNA targeting NFIA to explore the characteristics of NFIA expression and its role in astrocyte reactivity in a 4-aminopyridine (4-AP)-induced seizure model in vivo and in vitro. Combined with the employment of a HA-tagged plasmid overexpressing NFIA, we further investigate the precise mechanisms how NIFA facilitates epileptogenesis. RESULTS: 4-AP-induced NFIA upregulation in hippocampal region is astrocyte-specific, and primarily promotes detrimental actions of reactive astrocyte. In line with this phenomenon, both NFIA and vanilloid transient receptor potential 4 (TRPV4) are upregulated in hippocampal astrocytes in human samples from the TLE surgical patients and mouse samples with intraperitoneal 4-AP. NFIA directly regulates mouse astrocytic TRPV4 expression while the quantity and the functional activity of TRPV4 are required for 4-AP-induced astrocyte reactivity and release of proinflammatory cytokines in the charge of NFIA upregulation. NFIA deficiency efficiently inhibits 4-AP-induced TRPV4 upregulation, weakens astrocytic calcium activity and specific astrocyte reactivity, thereby mitigating aberrant neuronal discharges and neuronal damage, and suppressing epileptic seizure. CONCLUSIONS: Our results uncover the critical role of NFIA in astrocyte reactivity and illustrate how epileptogenic brain injury initiates cell-specific signaling pathway to dictate the astrocyte responses.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Fatores de Transcrição NFI , Canais de Cátion TRPV , Animais , Humanos , Camundongos , 4-Aminopiridina/efeitos adversos , Astrócitos/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Canais de Cátion TRPV/metabolismo , Regulação para Cima
2.
Neurotherapeutics ; 19(2): 660-681, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35182379

RESUMO

Astrocytes are critical regulators of the immune/inflammatory response in several human central nervous system (CNS) diseases. Emerging evidence suggests that dysfunctional astrocytes are crucial players in seizures. The objective of this study was to investigate the role of transient receptor potential vanilloid 4 (TRPV4) in 4-aminopyridine (4-AP)-induced seizures and the underlying mechanism. We also provide evidence for the role of Yes-associated protein (YAP) in seizures. 4-AP was administered to mice or primary cultured astrocytes. YAP-specific small interfering RNA (siRNA) was administered to primary cultured astrocytes. Mouse brain tissue and surgical specimens from epileptic patient brains were examined, and the results showed that TRPV4 was upregulated, while astrocytes were activated and polarized to the A1 phenotype. The levels of glial fibrillary acidic protein (GFAP), cytokine production, YAP, signal transducer activator of transcription 3 (STAT3), intracellular Ca2+([Ca2+]i) and the third component of complement (C3) were increased in 4-AP-induced mice and astrocytes. Perturbations in the immune microenvironment in the brain were balanced by TRPV4 inhibition or the manipulation of [Ca2+]i in astrocytes. Knocking down YAP with siRNA significantly inhibited 4-AP-induced pathological changes in astrocytes. Our study demonstrated that astrocytic TRPV4 activation promoted neuroinflammation through the TRPV4/Ca2+/YAP/STAT3 signaling pathway in mice with seizures. Astrocyte TRPV4 inhibition attenuated neuroinflammation, reduced neuronal injury, and improved neurobehavioral function. Targeting astrocytic TRPV4 activation may provide a promising therapeutic approach for managing epilepsy.


Assuntos
Astrócitos , Convulsões , Canais de Cátion TRPV , Animais , Astrócitos/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
3.
Intervirology ; 65(1): 17-28, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34438397

RESUMO

BACKGROUND: For foamy virus, the transactivator of spumaretrovirus (Tas) could bind directly to target DNA sequences termed as Tas responsive elements and trigger the viral internal promoter (IP) and long terminal repeat (LTR) promoters. The cellular endogenous factors also play an important role in viral gene expressions. We hypothesized that except the viral transcription factor Tas, the cellular endogenous factors also affect the viral gene expression. METHODS: The full length of the prototype foamy virus (PFV) genome (U21247) was used to predict the potential binding sites of the transcription factors by online software JASPAR (http://jaspar.genereg.net) and Softberry (http://linux1.softberry.com/berry.phtml?topic=index&group=programs&subgroup=promoter). The Dual-Luciferase® Reporter Assay System (Promega, USA) was used to confirm the relative luciferase activities of the test groups. The different representative activating agents or inhibitors of each canonical signal pathway were used to identify the impact of these pathways on PFV 5'LTR and IP promoters. RESULTS: The results showed different cellular endogenous factors might have respective effects on PFV 5'LTR and IP. It is worth mentioning that activator protein-1 and BCL2-associated athanogene 3, 2 kinds of vital proteins associated with NF-κB and PKC pathways, could activate the basal activity of 5'LTR and IP promoters but inhibit the Tas-regulated activity of both promoters. Furthermore, PFV Tas was identified to trigger the transcription of the NF-κB promoter. CONCLUSION: NF-κB had a negative effect on PFV 5'LTR and IP promoter activities, the PKC pathway might upregulate 5'LTR and IP promoter activities, and the JNK and NF-AT signal pathway could increase the Tas-regulated promoter activity of PFV 5'LTR. This study sheds light on the interaction between PFV and the host cell and may help utilize the viral promoters in retroviral vectors designed for gene transfer experiments.


Assuntos
Spumavirus , Linhagem Celular , Regiões Promotoras Genéticas , Spumavirus/genética , Sequências Repetidas Terminais/genética , Fatores de Transcrição
4.
Neurosci Bull ; 37(10): 1427-1440, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34309810

RESUMO

Epilepsy is a brain condition characterized by the recurrence of unprovoked seizures. Recent studies have shown that complement component 3 (C3) aggravate the neuronal injury in epilepsy. And our previous studies revealed that TRPV1 (transient receptor potential vanilloid type 1) is involved in epilepsy. Whether complement C3 regulation of neuronal injury is related to the activation of TRPV1 during epilepsy is not fully understood. We found that in a mouse model of status epilepticus (SE), complement C3 derived from astrocytes was increased and aggravated neuronal injury, and that TRPV1-knockout rescued neurons from the injury induced by complement C3. Circular RNAs are abundant in the brain, and the reduction of circRad52 caused by complement C3 promoted the expression of TRPV1 and exacerbated neuronal injury. Mechanistically, disorders of neuron-glia interaction mediated by the C3-TRPV1 signaling pathway may be important for the induction of neuronal injury. This study provides support for the hypothesis that the C3-TRPV1 pathway is involved in the prevention and treatment of neuronal injury and cognitive disorders.


Assuntos
Complemento C3 , Epilepsia , Neurônios/patologia , Estado Epiléptico , Canais de Cátion TRPV , Animais , Astrócitos/metabolismo , Complemento C3/metabolismo , Camundongos , Canais de Cátion TRPV/metabolismo
5.
FASEB J ; 35(2): e21330, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33417289

RESUMO

Epilepsy is a common brain disorder, repeated seizures of epilepsy may lead to a series of brain pathological changes such as neuronal or glial damage. However, whether circular RNAs are involved in neuronal injury during epilepsy is not fully understood. Here, we screened circIgf1r in the status epilepticus model through circRNA sequencing, and found that it was upregulated after the status epilepticus model through QPCR analysis. Astrocytes polarizing toward neurotoxic A1 phenotype and neurons loss were observed after status epilepticus. Through injecting circIgf1r siRNA into the lateral ventricle, it was found that knocking down circIgf1r in vivo would induce the polarization of astrocytes to phenotype A2 and reduce neuronal loss. The results in vitro further confirmed that inhibiting the expression of circIgf1r in astrocytes could protect neurons by converting reactive astrocytes from A1 to the protective A2. In addition, knocking down circIgf1r in astrocytes could functionally promote astrocyte autophagy and relieve the destruction of 4-AP-induced autophagy flux. In terms of mechanism, circIgf1r promoted the polarization of astrocytes to phenotype A1 by inhibiting autophagy. Taken together, our results reveal circIgf1r may serve as a potential target for the prevention and treatment of neuron damage after epilepsy.


Assuntos
Astrócitos/metabolismo , Epilepsia/genética , Inativação Gênica , RNA Circular/metabolismo , Animais , Astrócitos/citologia , Células Cultivadas , Epilepsia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Neurônios/metabolismo , RNA Circular/genética , Receptor IGF Tipo 1/genética
6.
J Neuroinflammation ; 16(1): 214, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722723

RESUMO

BACKGROUND: Neonatal hypoxic-ischemic brain damage (HIBD), a leading cause of neonatal mortality, has intractable sequela such as epilepsy that seriously affected the life quality of HIBD survivors. We have previously shown that ion channel dysfunction in the central nervous system played an important role in the process of HIBD-induced epilepsy. Therefore, we continued to validate the underlying mechanisms of TRPV1 as a potential target for epilepsy. METHODS: Neonatal hypoxic ischemia and oxygen-glucose deprivation (OGD) were used to simulate HIBD in vivo and in vitro. Primarily cultured astrocytes were used to assess the expression of TRPV1, glial fibrillary acidic protein (GFAP), cytoskeletal rearrangement, and inflammatory cytokines by using Western blot, q-PCR, and immunofluorescence. Furthermore, brain electrical activity in freely moving mice was recorded by electroencephalography (EEG). TRPV1 current and neuronal excitability were detected by whole-cell patch clamp. RESULTS: Astrocytic TRPV1 translocated to the membrane after OGD. Mechanistically, astrocytic TRPV1 activation increased the inflow of Ca2+, which promoted G-actin polymerized to F-actin, thus promoted astrocyte migration after OGD. Moreover, astrocytic TRPV1 deficiency decreased the production and release of pro-inflammatory cytokines (TNF, IL-6, IL-1ß, and iNOS) after OGD. It could also dramatically attenuate neuronal excitability after OGD and brain electrical activity in HIBD mice. Behavioral testing for seizures after HIBD revealed that TRPV1 knockout mice demonstrated prolonged onset latency, shortened duration, and decreased seizure severity when compared with wild-type mice. CONCLUSIONS: Collectively, TRPV1 promoted astrocyte migration thus helped the infiltration of pro-inflammatory cytokines (TNF, IL-1ß, IL-6, and iNOS) from astrocytes into the vicinity of neurons to promote epilepsy. Our study provides a strong rationale for astrocytic TRPV1 to be a therapeutic target for anti-epileptogenesis after HIBD.


Assuntos
Astrócitos/metabolismo , Epilepsia/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Inflamação/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Encéfalo/metabolismo , Movimento Celular/fisiologia , Citocinas/metabolismo , Epilepsia/etiologia , Hipóxia-Isquemia Encefálica/complicações , Camundongos , Camundongos Knockout , Neurônios/metabolismo
7.
J Neuroinflammation ; 16(1): 114, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142341

RESUMO

BACKGROUND: Hypoxic-ischemic encephalopathy (HIE) is a serious birth complication with high incidence in both advanced and developing countries. Children surviving from HIE often have severe long-term sequela including cerebral palsy, epilepsy, and cognitive disabilities. The severity of HIE in infants is tightly associated with increased IL-1ß expression and astrocyte activation which was regulated by transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel in the TRP family. METHODS: Neonatal hypoxic ischemia (HI) and oxygen-glucose deprivation (OGD) were used to simulate HIE in vivo and in vitro. Primarily cultured astrocytes were used for investigating the expression of glial fibrillary acidic protein (GFAP), IL-1ß, Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), and activation of the nucleotide-binding, oligomerization domain (NOD)-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome by using Western blot, q-PCR, and immunofluorescence. Brain atrophy, infarct size, and neurobehavioral disorders were evaluated by Nissl staining, 2,3,5-triphenyltetrazolium chloride monohydrate (TTC) staining and neurobehavioral tests (geotaxis reflex, cliff aversion reaction, and grip test) individually. RESULTS: Astrocytes were overactivated after neonatal HI and OGD challenge. The number of activated astrocytes, the expression level of IL-1ß, brain atrophy, and shrinking infarct size were all downregulated in TRPV1 KO mice. TRPV1 deficiency in astrocytes attenuated the expression of GFAP and IL-1ß by reducing phosphorylation of JAK2 and STAT3. Meanwhile, IL-1ß release was significantly reduced in TRPV1 deficiency astrocytes by inhibiting activation of NLRP3 inflammasome. Additionally, neonatal HI-induced neurobehavioral disorders were significantly improved in the TRPV1 KO mice. CONCLUSIONS: TRPV1 promotes activation of astrocytes and release of astrocyte-derived IL-1ß mainly via JAK2-STAT3 signaling and activation of the NLRP3 inflammasome. Our findings provide mechanistic insights into TRPV1-mediated brain damage and neurobehavioral disorders caused by neonatal HI and potentially identify astrocytic TRPV1 as a novel therapeutic target for treating HIE in the subacute stages (24 h).


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Interleucina-1beta/metabolismo , Canais de Cátion TRPV/deficiência , Animais , Astrócitos/patologia , Encéfalo/patologia , Células Cultivadas , Feminino , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canais de Cátion TRPV/genética
8.
Front Cell Dev Biol ; 7: 339, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921851

RESUMO

Hypoxic-ischemic encephalopathy (HIE) is a serious birth complication with severe long-term sequelae such as cerebral palsy, epilepsy and cognitive disabilities. Na+-K+-2Cl- cotransporters 1 (NKCC1) is dramatically upregulated after hypoxia-ischemia (HI), which aggravates brain edema and brain damage. Clinically, an NKCC1-specific inhibitor, bumetanide, is used to treat diseases related to aberrant NKCC1 expression, but the underlying mechanism of aberrant NKCC1 expression has rarely been studied in HIE. In this study, the cooperative effect of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor of activated T cells 5 (NFAT5) on NKCC1 expression was explored in hippocampal neurons under hypoxic conditions. HI increased HIF-1α nuclear localization and transcriptional activity, and pharmacological inhibition of the HIF-1α transcription activity or mutation of hypoxia responsive element (HRE) motifs recovered the hypoxia-induced aberrant expression and promoter activity of NKCC1. In contrast, oxygen-glucose deprivation (OGD)-induced downregulation of NFAT5 expression was reversed by treating with hypertonic saline, which ameliorated aberrant NKCC1 expression. More importantly, knocking down NFAT5 or mutation of the tonicity enhancer element (TonE) stimulated NKCC1 expression and promoter activity under normal physiological conditions. The positive regulation of NKCC1 by HIF-1α and the negative regulation of NKCC1 by NFAT5 may serve to maintain NKCC1 expression levels, which may shed light on the transcription regulation of NKCC1 in hippocampal neurons after hypoxia.

9.
J Neuroinflammation ; 15(1): 186, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925377

RESUMO

BACKGROUND: Neonatal hypoxic-ischemic brain damage, characterized by tissue loss and neurologic dysfunction, is a leading cause of mortality and a devastating disease of the central nervous system. We have previously shown that vitexin has been attributed various medicinal properties and has been demonstrated to have neuroprotective roles in neonatal brain injury models. In the present study, we continued to reinforce and validate the basic understanding of vitexin (45 mg/kg) as a potential treatment for epilepsy and explored its possible underlying mechanisms. METHODS: P7 Sprague-Dawley (SD) rats that underwent right common carotid artery ligation and rat brain microvascular endothelial cells (RBMECs) were used for the assessment of Na+-K+-Cl- co-transporter1 (NKCC1) expression, BBB permeability, cytokine expression, and neutrophil infiltration by western blot, q-PCR, flow cytometry (FCM), and immunofluorescence respectively. Furthermore, brain electrical activity in freely moving rats was recorded by electroencephalography (EEG). RESULTS: Our data showed that NKCC1 expression was attenuated in vitexin-treated rats compared to the expression in the HI group in vivo. Oxygen glucose deprivation/reoxygenation (OGD) was performed on RBMECs to explore the role of NKCC1 and F-actin in cytoskeleton formation with confocal microscopy, N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide, and FCM. Concomitantly, treatment with vitexin effectively alleviated OGD-induced NKCC1 expression, which downregulated F-actin expression in RBMECs. In addition, vitexin significantly ameliorated BBB leakage and rescued the expression of tight junction-related protein ZO-1. Furthermore, inflammatory cytokine and neutrophil infiltration were concurrently and progressively downregulated with decreasing BBB permeability in rats. Vitexin also significantly suppressed brain electrical activity in neonatal rats. CONCLUSIONS: Taken together, these results confirmed that vitexin effectively alleviates epilepsy susceptibility through inhibition of inflammation along with improved BBB integrity. Our study provides a strong rationale for the further development of vitexin as a promising therapeutic candidate treatment for epilepsy in the immature brain.


Assuntos
Anticonvulsivantes/uso terapêutico , Apigenina/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Hipóxia-Isquemia Encefálica/complicações , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Animais , Animais Recém-Nascidos , Hipóxia Celular/efeitos dos fármacos , Células Cultivadas , Cloretos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/deficiência , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/metabolismo , Interleucina-3/genética , Interleucina-3/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética , Proteína da Zônula de Oclusão-1/metabolismo
10.
CNS Neurosci Ther ; 24(10): 967-977, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29577640

RESUMO

AIM: Multiple sclerosis (MS) is a neurological autoimmune disorder characterized by mistaken attacks of inflammatory cells against the central nervous system (CNS), resulting in demyelination and axonal damage. Kv1.3 channel blockers can inhibit T-cell activation and have been designed for MS therapy. However, little is known about the effects of Kv1.3 blockers on protecting myelin sheaths/axons in MS. This study aimed at investigating the neuroprotection efficacy of a selective Kv1.3 channel blocker ImKTx88 (ImK) in MS animal model. METHODS: Experimental autoimmune encephalomyelitis (EAE) rat model was established. The neuroprotective effect of ImK was assessed by immunohistochemistry and transmission electron microscopy (TEM). In addition, the antiinflammatory effect of ImK by suppressing T-cell activation was assessed by flow cytometry and ELISA in vitro. RESULTS: Our results demonstrated that ImK administration ameliorated EAE clinical severity. Moreover, ImK increased oligodendrocytes survival, preserved axons, and myelin integrity and reduced the infiltration of activated T cells into the CNS. This protective effect of the peptide may be related to its suppression of autoantigen-specific T-cell activation via calcium influx inhibition. CONCLUSION: ImK prevents neurological damage by suppressing T-cell activation, suggesting the applicability of this peptide in MS therapy.


Assuntos
Encefalomielite Autoimune Experimental/complicações , Canal de Potássio Kv1.3/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/etiologia , Bloqueadores dos Canais de Potássio/uso terapêutico , Linfócitos T/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Canal de Potássio Kv1.3/antagonistas & inibidores , Microscopia Eletrônica de Transmissão , Mycobacterium tuberculosis/patogenicidade , Proteína Básica da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Linfócitos T/efeitos dos fármacos , Linfócitos T/ultraestrutura
11.
Oncotarget ; 8(15): 25513-25524, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28424420

RESUMO

Neonatal hypoxic-ischemic is a major cause of death and disability in neonates. In this study, we suggest for the first time that pretreatment with vitexin may suppress a pro-apoptotic signaling pathway in hypoxic-ischemic neuronal injury in neonates by inhibition of the phosphorylation of Ca2+/Calmodulin-dependent protein kinase II. Here we found that vitexin pretreatment reduced brain infarct volume in a dose-dependent manner. In addition, vitexin decreased the number of TUNEL-positive cells and brain atrophy. Furthermore, vitexin improved neurobehavioral outcomes. Vitexin also reduced oxygen glucose deprivation-induced neuronal injury and calcium entry. Vitexin pretreatment increased the Bcl-2/Bax protein ratio and decreased phosphorylation of Ca2+/Calmodulin-dependent protein kinase II and NF-κB, cleaved caspase-3 protein expression 24 hours after injury. Our data indicate that pretreatment with vitexin protects against neonatal hypoxic-ischemic brain injury and thus has potential as a treatment for hypoxic-ischemic brain injury.


Assuntos
Apigenina/farmacologia , Apoptose/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Atrofia , Infarto Encefálico/etiologia , Infarto Encefálico/metabolismo , Infarto Encefálico/patologia , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glucose/metabolismo , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/patologia , Camundongos , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxigênio/metabolismo
12.
Brain Res Bull ; 130: 188-199, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28161194

RESUMO

Hypoxia-ischemia brain damage (HIBD) is one of prevalent causes of neonatal mortality and morbidity. Our data demonstrated that hypoxia-ischemia (HI) induced Na+-K+-Cl--co-transporter 1 (NKCC1) increasing in hippocampus. Previous studies demonstrated that NKCC1 regulates various stages of neurogenesis. In this study, we studied the role of increased NKCC1 in regulating of HI-induced neurogenesis. HIBD model was established in 7days old Sprague-Dawley rat pup, and the expression of NKCC1 was detected by western blot and qPCR. Brain electrical activity in freely rats was monitored by electroencephalography (EEG) recordings. HI-induced neurogenesis was detected by immunofluorescence staining. Neurobehavioral test was to investigate the neuro-protective role of bumetanide, an inhibitor of NKCC1, on neonatal rats after HI. The results showed that bumetanide treatment significantly reduced brain electrical activity and the seizure stage of epilepsy induced by pentylenetetrazol (PTZ) in vivo after HI. In addition, bumetanide restored aberrant hippocampal neurogenesis and associated cognitive function. Our data demonstrated that bumetanide reduces the susceptibility of epilepsy induced by PTZ in rats suffering from HI injury during neonatal period via restoring the ectopic newborn neurons in dentate gyrus (DG) and cognitive function.


Assuntos
Anticonvulsivantes/administração & dosagem , Bumetanida/administração & dosagem , Hipocampo/fisiopatologia , Hipóxia-Isquemia Encefálica/complicações , Neurogênese/efeitos dos fármacos , Convulsões/fisiopatologia , Animais , Animais Recém-Nascidos , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Eletroencefalografia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Memória/efeitos dos fármacos , Pentilenotetrazol/administração & dosagem , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/complicações , Convulsões/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo
13.
Neuropharmacology ; 99: 38-50, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26187393

RESUMO

Previous studies have demonstrated that the early suppression of HIF-1α after hypoxia-ischemia (HI) injury provides neuroprotection. Vitexin (5, 7, 4-trihydroxyflavone-8-glucoside), an HIF-1α inhibitor, is a c-glycosylated flavone that has been identified in medicinal plants. Therefore, we hypothesized that treatment with vitexin would protect against HI brain injury. Newborn rat pups were subjected to unilateral carotid artery ligation followed by 2.5 h of hypoxia (8% O2 at 37 °C). Vitexin (30, 45 or 60 mg/kg) was administered intraperitoneally at 5 min or 3 h after HI. Vitexin, administered 5 min after HI, was neuroprotective as seen by decreased infarct volume evaluated at 48 h post-HI. This neuroprotection was removed when vitexin was administered 3 h after HI. Neuronal cell death, blood-brain barrier (BBB) integrity, brain edema, HIF-1α and VEGF protein levels were evaluated using a combination of Nissl staining, IgG staining, brain water content, immunohistochemistry and Western blot at 24 and 48 h after HI. The long-term effects of vitexin were evaluated by brain atrophy measurement, Nissl staining and neurobehavioral tests. Vitexin (45 mg/kg) ameliorated brain edema, BBB disruption and neuronal cell death; Upregulation of HIF-1α by dimethyloxalylglycine (DMOG) increased the BBB permeability and brain edema compared to HI alone. Vitexin attenuated the increase in HIF-1α and VEGF. Vitexin also had long-term effects of protecting against the loss of ipsilateral brain and improveing neurobehavioral outcomes. In conclusion, our data indicate early HIF-1α inhibition with vitexin provides both acute and long-term neuroprotection in the developing brain after neonatal HI injury.


Assuntos
Apigenina/farmacologia , Encéfalo/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Animais Recém-Nascidos , Apigenina/química , Atrofia/tratamento farmacológico , Atrofia/fisiopatologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Edema Encefálico/tratamento farmacológico , Edema Encefálico/patologia , Edema Encefálico/fisiopatologia , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Fármacos Neuroprotetores/química , Distribuição Aleatória , Ratos Sprague-Dawley , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Brain Behav Immun ; 48: 68-77, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25801060

RESUMO

Febrile seizure (FS) is the most common seizure disorder in children, and children with FS are regarded as a high risk for the eventual development of epilepsy. Brain inflammation may be implicated in the mechanism of FS. Transient receptor potential vanilloid 1 (TRPV1) is believed to act as a monitor and regulator of body temperature. The role of inflammation in synaptic plasticity mediation indicates that TRPV1 is relevant to several nervous system diseases, such as epilepsy. Here, we report a critical role for TRPV1 in a febrile seizure mouse model and reveal increased levels of pro-inflammatory factors in the immature brain. Animals were subjected to hyperthermia for 30 min, which generates seizures lasting approximately 20 min, and then were used for experiments. To invoke frequently repetitive febrile seizures, mice are exposed to hyperthermia for three times daily at an interval of 4h between every time induced seizure, and a total of 4 days to induce. Behavioral testing for febrile seizures revealed that a TRPV1 knock-out mouse model demonstrated a prolonged onset latency and a shortened duration and seizure grade of febrile seizure when compared with wild type (WT) mice. The expression levels of both TRPV1 mRNA and protein increased after a hyperthermia-induced febrile seizure in WT mice. Notably, TRPV1 activation resulted in a significant elevation in the expression of pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α and HMGB1) in the hippocampus and cortex. These data indicate that the reduction of TRPV1 expression parallels a decreased susceptibility to febrile seizures. Thus, preventative strategies might be developed for use during febrile seizures.


Assuntos
Encéfalo/metabolismo , Citocinas/metabolismo , Hipertermia Induzida , Convulsões Febris/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Encéfalo/imunologia , Linhagem Celular , Modelos Animais de Doenças , Hipocampo/imunologia , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Convulsões Febris/imunologia , Canais de Cátion TRPV/genética
15.
Neurosci Bull ; 30(6): 985-998, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25370443

RESUMO

Gamma-amino-butyric acid (GABA)-containing interneurons are crucial to both development and function of the brain. Down-regulation of GABAergic inhibition may result in the generation of epileptiform activity. Loss, axonal sprouting, and dysfunction of interneurons are regarded as mechanisms involved in epileptogenesis. Recent evidence suggests that network connectivity and the properties of interneurons are responsible for excitatory-inhibitory neuronal circuits. The balance between excitation and inhibition in CA1 neuronal circuitry is considerably altered during epileptic changes. This review discusses interneuron diversity, the causes of interneuron dysfunction in epilepsy, and the possibility of using GABAergic neuronal progenitors for the treatment of epilepsy.


Assuntos
Epilepsia/fisiopatologia , Neurônios GABAérgicos/fisiologia , Hipocampo/fisiopatologia , Interneurônios/fisiologia , Animais , Humanos , Rede Nervosa/fisiologia , Inibição Neural/fisiologia
18.
Toxicon ; 71: 66-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23732125

RESUMO

The transient receptor potential vanilloid 1(TRPV1) channels are members of the transient receptor potential (TRP) superfamily. Members of this family are expressed in primary sensory neurons and are best known for their role in nociception and sensory transmission. Multiple painful stimuli can activate these channels. In this review, we discussed the mechanisms of different types of venoms that target TRPV1, such as scorpion venom, botulinum neurotoxin, spider toxin, ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning (NSP). Some of these toxins activate TRPV1; however, some do not. Regardless of TRPV1 inhibition or activation, they occur through different pathways. For example, BoNT/A decreases TRPV1 expression levels by blocking TRPV1 trafficking to the plasma membrane, although the exact mechanism is still under debate. Vanillotoxins from tarantula (Psalmopoeus cambridgei) are proposed to activate TRPV1 via interaction with a region of TRPV1 that is homologous to voltage-dependent ion channels. Here, we offer a description of the present state of knowledge for this complex subject.


Assuntos
Dor/patologia , Canais de Cátion TRPV/metabolismo , Toxinas Biológicas/toxicidade , Animais , Toxinas Botulínicas/toxicidade , Humanos , Dor/induzido quimicamente , Venenos de Escorpião/toxicidade , Venenos de Aranha/toxicidade , Relação Estrutura-Atividade , Canais de Cátion TRPV/genética
19.
Acta Virol ; 56(4): 283-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23237084

RESUMO

One of the most fascinating findings in retrovirology is the construction of viral vectors based on foamy viruses (FVs) for gene therapy. The envelope glycoprotein (Env), one of the structural proteins of FV, is an important antigen in the immunoassays, as it is highly specific. To compare the characteristics of all 15 available FV Envs, the phylogenesis, hydrophobicity, modifications, and conserved motifs were analyzed based on the Env sequences. Meanwhile, the secondary structures of transmembrane (TM) domains of FV Envs were predicted. The results of phylogenetic analyses based on Envs indicated that the foamy viruses from different hosts could form three groups. The hydrophobicity analysis revealed that FV Envs had two prominent hydrophobic regions, which was similar to other retroviruses. Though the glycosylation, ubiquitination, and the secondary structures of TM domains of FV Envs were in line with other retroviruses, the roles were distinctly different. Interestingly, the analyses of conserved motifs suggested that FV Envs possessed several specific functional motifs.


Assuntos
Infecções por Retroviridae/veterinária , Infecções por Retroviridae/virologia , Spumavirus/genética , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Animais , Humanos , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Alinhamento de Sequência , Spumavirus/química , Spumavirus/classificação , Proteínas do Envelope Viral/metabolismo
20.
J Biol Chem ; 287(35): 29479-94, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22761436

RESUMO

The voltage-gated Kv1.3 K(+) channel in effector memory T cells serves as a new therapeutic target for multiple sclerosis. In our previous studies, the novel peptide ADWX-1 was designed and synthesized as a specific Kv1.3 blocker. However, it is unclear if and how ADWX-1 alleviates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. In this study, the administration of ADWX-1 significantly ameliorated the rat experimental autoimmune encephalomyelitis model by selectively inhibiting CD4(+)CCR7(-) phenotype effector memory T cell activation. In contrast, the Kv1.3-specific peptide had little effect on CD4(+)CCR7(+) cells, thereby limiting side effects. Furthermore, we determined that ADWX-1 is involved in the regulation of NF-κB signaling through upstream protein kinase C-θ (PKCθ) in the IL-2 pathway of CD4(+)CCR7(-) cells. The elevated expression of Kv1.3 mRNA and protein in activated CD4(+)CCR7(-) cells was reduced by ADWX-1 engagement; however, an apparent alteration in CD4(+)CCR7(+) cells was not observed. Moreover, the selective regulation of the Kv1.3 channel gene expression pattern by ADWX-1 provided a further and sustained inhibition of the CD4(+)CCR7(-) phenotype, which depends on the activity of Kv1.3 to modulate its activation signal. In addition, ADWX-1 mediated the activation of differentiated Th17 cells through the CCR7(-) phenotype. The efficacy of ADWX-1 is supported by multiple functions, which are based on a Kv1.3(high) CD4(+)CCR7(-) T cell selectivity through two different pathways, including the classic channel activity-associated IL-2 pathway and the new Kv1.3 channel gene expression pathway.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Memória Imunológica/efeitos dos fármacos , Canal de Potássio Kv1.3/antagonistas & inibidores , Esclerose Múltipla/tratamento farmacológico , Peptídeos/farmacologia , Receptores CCR7 , Animais , Encefalomielite Autoimune Experimental/imunologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-2/imunologia , Células Jurkat , Canal de Potássio Kv1.3/imunologia , Esclerose Múltipla/imunologia , RNA Mensageiro/imunologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...